
扎克伯格的豪赌初见成效?Meta新方法让LLM长上下文处理提速30倍
扎克伯格的豪赌初见成效?Meta新方法让LLM长上下文处理提速30倍经历了前段时间的鸡飞狗跳,扎克伯格的投资似乎终于初见成效。
经历了前段时间的鸡飞狗跳,扎克伯格的投资似乎终于初见成效。
自2014 年提出以来,Adam 及其改进版 AdamW 长期占据开放权重语言模型预训练的主导地位,帮助模型在海量数据下保持稳定并实现较快收敛。
在多模态大模型的基座上,视觉 - 语言 - 动作(Visual-Language-Action, VLA)模型使用大量机器人操作数据进行预训练,有望实现通用的具身操作能力。
香港科技大学谭平教授团队与地平线(Horizon Robotics)团队最新发布了一项 3D 场景表征与大规模重建新方法 SAIL-Recon,通过锚点图建立构建场景全局隐式表征,突破现有 VGGT 基础模型对于大规模视觉定位与 3D 重建的处理能力瓶颈,实现万帧级的场景表征抽取与定位重建,将空间智能「3D 表征与建模」前沿推向一个新的高度。
开放词汇识别与分类对于全面理解现实世界的 3D 场景至关重要。目前,所有现有方法在训练或推理过程中都依赖于 2D 或文本模态。这凸显出缺乏能够单独处理 3D 数据以进行端到端语义学习的模型,以及训练此类模型所需的数据。与此同时,3DGS 已成为各种视觉任务中 3D 场景表达的重要标准之一。
让大模型破译从未见过的甲骨文,准确率拿下新SOTA!
周末在家扒拉上周更新的论文的时候,看到一篇我自己一直非常关心的领域的论文,而且还是来自发论文发的越来越少的OpenAI。
为了降低大模型预训练成本,最近两年,出现了很多新的优化器,声称能相比较AdamW,将预训练加速1.4×到2×。但斯坦福的一项研究,指出不仅新优化器的加速低于宣称值,而且会随模型规模的增大而减弱,该研究证实了严格基准评测的必要性。
好家伙,我直呼好家伙。 号称「赛博白月光」的 GPT-4o,在它的知识体系里,对日本女优「波多野结衣」的熟悉程度,竟然比中文日常问候语「您好」还要高出 2.6 倍。
模型训练重点在于数据的数量与质量?其实还有一个关键因素—— 数据的出场顺序。