又一国产图像大模型开源!实测连续P图绝了,中文渲染是短板
又一国产图像大模型开源!实测连续P图绝了,中文渲染是短板今日,美团正式发布并开源图像生成模型LongCat-Image,这是一款在图像编辑能力上达到开源SOTA水准的6B参数模型,重点瞄准文生图与单图编辑两大核心场景。在实际体验中,它在连续改图、风格变化和材质细节上表现较好,但在复杂排版场景下,中文文字渲染仍存在不稳定的情况。
今日,美团正式发布并开源图像生成模型LongCat-Image,这是一款在图像编辑能力上达到开源SOTA水准的6B参数模型,重点瞄准文生图与单图编辑两大核心场景。在实际体验中,它在连续改图、风格变化和材质细节上表现较好,但在复杂排版场景下,中文文字渲染仍存在不稳定的情况。
在 Text-to-Video / Image-to-Video 技术突飞猛进的今天,我们已经习惯了这样一个常识: 视频生成的第一帧(First Frame)只是时间轴的起点,是后续动画的起始画面。
DeepWisdom研究团队提出:视频生成模型不仅能画画,更能推理。 为了验证这一观点,团队推出了VR-Bench——这是首个通过迷宫任务评估视频模型空间推理(spatial reasoning)能力的基准测试
在AIGC的浪潮中,3D生成模型(如TRELLIS)正以惊人的速度进化,生成的模型越来越精细。然而,“慢”与计算量大依然是制约其大规模应用的最大痛点。复杂的去噪过程、庞大的计算量,让生成一个高质量3D资产往往需要漫长的等待。
近一年以来,统一理解与生成模型发展十分迅速,该任务的主要挑战在于视觉理解和生成任务本身在网络层间会产生冲突。早期的完全统一模型(如 Emu3)与单任务的方法差距巨大,Janus-Pro、BAGEL 通过一步一步解耦模型架构,极大地减小了与单任务模型的性能差距,后续方法甚至通过直接拼接现有理解和生成模型以达到极致的性能。
REG 是一种简单而有效的方法,仅通过引入一个 class token 便能大幅加速生成模型的训练收敛。其将基础视觉模型(如 DINOv2)的 class token 与 latent 在空间维度拼接后共同加噪训练,从而显著提升 Diffusion 的收敛速度与性能上限。在 ImageNet 256×256 上,
To C玩梗是Sora的热闹,用多模态大一统模型服务专业客户,才是AI视频生成的正经生意。
从单张图像创建可编辑的 3D 模型是计算机图形学领域的一大挑战。传统的 3D 生成模型多产出整体式的「黑箱」资产,使得对个别部件进行精细调整几乎成为不可能。
腾讯混元大模型团队正式发布并开源HunyuanVideo 1.5。
当前,视频生成模型性能正在快速提升,尤其是基于Transformer架构的DiT模型,在视频生成领域的表现已经逐渐接近真实拍摄效果。然而,这些扩散模型也面临一个共同的瓶颈:推理时间长、算力成本高、生成速度难以提升。随着视频生成长度持续增加、分辨率不断提高,这个瓶颈正在成为影响视频创作体验的主要障碍之一。