ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
全新神经网络架构KAN一夜爆火!200参数顶30万,MIT华人一作,轻松复现Nature封面AI数学研究
2569点击    2024-05-02 17:52

一种全新的神经网络架构KAN,诞生了!


与传统的MLP架构截然不同,且能用更少的参数在数学、物理问题上取得更高精度。


比如,200个参数的KANs,就能复现DeepMind用30万参数的MLPs发现数学定理研究。


不仅准确性更高,并且还发现了新的公式。要知道后者可是登上Nature封面的研究啊~



在函数拟合、偏微分方程求解,甚至处理凝聚态物理方面的任务都比MLP效果要好。


而在大模型问题的解决上,KAN天然就能规避掉灾难性遗忘问题,并且注入人类的习惯偏差或领域知识非常容易。


来自MIT、加州理工学院、东北大学等团队的研究一出,瞬间引爆一整个科技圈:Yes We KAN!



甚至直接引出关于能否替代掉Transformer的MLP层的探讨,有人已经准备开始尝试……



有网友表示:这看起来像是机器学习的下一步


让机器学习每个特定神经元的最佳激活,而不是由我们人类决定使用什么激活函数。



还有人表示:可能正处于某些历史发展的中间。



GitHub上也已经开源,也就短短两三天时间就收获1.1kStar。



对MLP“进行一个简单的更改”


跟MLP最大、也是最为直观的不同就是,MLP激活函数是在神经元上,而KAN把可学习的激活函数放在权重上。



在作者看来,这是一个“简单的更改”。



从数学定理方面来看,MLP的灵感来自于通用近似定理,即对于任意一个连续函数,都可以用一个足够深的神经网络来近似。


而KAN则是来自于 Kolmogorov-Arnold 表示定理 (KART),每个多元连续函数都可以表示为单变量连续函数的两层嵌套叠加。



KAN的名字也由此而来。


正是受到这一定理的启发,研究人员用神经网络将Kolmogorov-Arnold 表示参数化。


为了纪念两位伟大的已故数学家Andrey Kolmogorov和Vladimir Arnold,我们称其为科尔莫格罗夫-阿诺德网络(KANs)。



而从算法层面上看,MLPs 在神经元上具有(通常是固定的)激活函数,而 KANs 在权重上具有(可学习的)激活函数。这些一维激活函数被参数化为样条曲线。


在实际应用过程中,KAN可以直观地可视化,提供MLP无法提供的可解释性和交互性。



不过,KAN的缺点就是训练速度较慢。


对于训练速度慢的问题,MIT博士生一作Ziming Liu解释道,主要有两个方面的原因。


一个是技术原因,可学习的激活函数评估成本比固定激活函数成本更高。


另一个则是主观原因,因为体内物理学家属性抑制程序员的个性,因此没有去尝试优化效率。



对于是否能适配Transformer,他表示:暂时不知道如何做到这一点。



以及对GPU友好吗?他表示:还没有,正在努力中。



天然能解决大模型灾难性遗忘


再来看看KAN的具体实现效果。


神经缩放规律:KAN 的缩放速度比 MLP 快得多。除了数学上以Kolmogorov-Arnold 表示定理为基础,KAN缩放指数也可以通过经验来实现。



函数拟合方面,KAN比MLP更准确。



而在偏微分方程求解,比如求解泊松方程,KAN比MLP更准确。



研究人员还有个意外发现,就是KAN不会像MLP那样容易灾难性遗忘,它天然就可以规避这个缺陷。



在可解释方面,KAN能通过符号公式揭示合成数据集的组成结构和变量依赖性。



人类用户可以与 KANs 交互,使其更具可解释性。在 KAN 中注入人类的归纳偏差或领域知识非常容易。



研究人员利用KANs还重新复现了DeepMind当年登上Nature的结果,并且还找到了Knot理论中新的公式,并以无监督的方式发现了新的结不变式关系。




Deepmind的MLP大约300000 个参数,而KAN大约只有200 个参数。KAN 可以立即进行解释,而 MLP 则需要进行特征归因的后期分析。并且准确性也更高。


对于计算要求,团队表示论文中的所有例子都可以在单个CPU上10分钟内重现。


虽然KAN所能处理的问题规模比许多机器学习任务要小,但对于科学相关任务来说就刚刚好。


比如研究凝固态物理中的一种相变:安德森局域化。



好了,那么KAN是否会取代Transformer中的MLP层呢?


有网友表示,这取决于两个因素。


一点是学习算法,如 SGD、AdamW、Sophia 等—能否找到适合 KANs 参数的局部最小值?


另一点则是能否在GPU上高效地实现KANs层,最好能比MLPs跟快。



最后,论文中还贴心的给出了“何时该选用KAN?”的决策树。



那么,你会开始尝试用KAN吗?还是让子弹再飞一会儿~


本文来自微信公众号“量子位”