ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
傅利叶创始人兼CEO顾捷:人形机器人没到价格战阶段,2025年行业产量将10倍增长
6060点击    2024-10-01 14:07

AI大模型的加速发展,催化了国产人形机器人陆续走出实验室,让量产成为人形机器人新的关键词。


今年以来,多家国产人形机器人公司发布首款人形机器人产品,他们之中,最年轻的公司还不到两岁。在傅利叶创始人兼CEO顾捷看来,这背后除了大模型的应用之外,还离不开国内高度发达的汽车、消费电子工业体系,让人形机器人的本体得以量产。


傅利叶是国内率先量产通用人形机器人的公司之一。在推出多款康复机器人后,傅利叶于2019年开始研发通用人形机器人,2023年推出的首款双足人形机器人GR-1,至今已在数十个场景交付百余台。


GR-1的多场景应用,让傅利叶听见了客户不同的反馈,也发现了人形机器人的不足。顾捷坦言,GR-1是一款原型机,距离完美仍然有很远的距离。


傅利叶理想状态的人形机器人,需要同时满足六个条件,即运动智能、认知智能、仿生设计、灵巧作业、商业应用、用户体验。而让人形机器人逐渐趋于完美,唯一方式是将人形机器人在多个场景商业化应用,吸收市场反馈不断迭代,从而让人形机器人真正产生商业价值。


近日,傅利叶发布其第二款通用人形机器人GR-2,其全身自由度达到53个,单臂运动负载达3kg,能够完成更复杂的操作。续航方面,GR-2的电池容量提升一倍,将续航时间提升至两个小时,同时新增换电方案。



△傅利叶第二代人形机器人GR-2


外观方面,GR-2在保留双足、五指的设计基础上,整体更接近人类。GR-2的身高达到175cm,体重63kg,整机布局采用内走线设计,线缆布置于机器人内部。顾捷解释,将机器人设计趋向于人类,可以采集真实数据进行功能泛化,让机器人在不同场景工作。


为了优化控制策略和性能,GR-2的关节布置由并联改为串联,使得每个关节的运动可以独立计算,有利于开发者部署控制算法,方便调试和维护,降低制造成本。


顾捷表示,自去年发布GR-1后,傅利叶就立刻启动第二款人形机器人的研发,GR-2正是吸收首款人形机器人应用后各方声音的研发结果。


傅利叶没有设定GR-2的销量目标,依旧小批量进行量产。顾捷认为,当下人形机器人远远没有达到大批量量产阶段,今年行业量产规模预计为数百台,但他预计,明年行业内人形机器人产量将同比增长10倍。


人形机器人的量产,可能会带来行业价格战吗?对于这一问题,顾捷表示,傅利叶不会打价格战,并且人形机器人行业远未到价格战的时期,应该更关注如何让人形机器人产品成熟。


关于未来GR-X系列人形机器人的研发,傅利叶表示没有一年发布一款人形机器人的节奏,顾捷认为,需要根据行业相关技术发展程度,才能决定启动项目时间。他相信,随着业界的持续研究推动,将在明年看见更多大模型与机器人融合的新进展。


以下是《智能涌现》等媒体与傅利叶创始人兼CEO顾捷、傅利叶通用机器人事业部副总裁周斌的对话,内容略经编辑:


关注机器人功能,而不是局部


Q:从第一代到第二代人形机器人,研发过程中存在哪些难点?傅利叶如何解决?


A:难点在于机器人的多维度都需要同时满足同一个要求,简单来说就是“既要又要”。比如12自由度的灵巧手,要求它在小型化同时还需实现非常精密的动作,我们通过优化设计动作、传动结构等方面,最终实现了小型12自由度的灵巧手。


从商品角度设计,灵巧手需要和整个机器人外壳结构无缝连接,需要跨模块思考,这是我们一直面临的技术难点。因此,我们按照整个项目设定大将多个团队融合为大团队一起研发,把机器人整体作为一个产品进行设计。


Q:第二代机器人的电池有哪些方面的升级?


A:根据GR-1在交付后客户的反馈,我们将GR-2的电池容量提升了超200%,并且可拆卸进行换电补能。


未来,傅利叶会和电池头部企业合作开发机器人电池。因为电池对我们来说只是一个模块,我们会采用最先进的商业可用技术应用至整个系统。


Q:GR-2的研发周期多长时间?


A:从去年发布第一代之后,我们就开始策划第二代性能指标达到SPEC,花了大概半年的时间,结合客户反馈、制造工艺搭样机。直到现在GR-2的样品出现,共有三个GR-2的形态迭代,过程中根据汇总的经验和反馈,进行了一些修改。


Q:GR-2发布后,下一代产品是否即将启动研发?


A:研发是一个滚动的过程,今天发布的人形机器人是GR-X系列,包括GR-1、 GR-2等其它系列产品,下一代GR-X系列产品留个悬念。


我们没有严格按照一年发布一款的节奏设定研发周期,因为现在的技术迭代和技术突破有自己的节奏,我们希望技术成熟一代,傅利叶发布一代人形机器人,相当于这一代人形机器人基本达到了我们目前所有的客户的需求,以及我们调研的认知高度,我们选择最可靠、最稳定的量产的工艺技术定义了一款当前的产品。


但是研究中的很多技术超前不少,比如我们之前在研究端到端感知,包括后面可能考虑有更大的算力、新材料,我们会多方面预演,之后才能按照时间节点排下一代的产品时间。


Q:智能化方面,傅利叶如何训练?


A:傅利叶的人形机器人没有AI的概念,我们侧重于将机器人本体的潜能和应用性能做好。算法层面,我们会进行组成算法调试,也会联合知名院校、AI公司研究、开发。


Q:傅利叶从首个研发方向是医疗机器人,到现在研发通用人形机器人,傅利叶的竞争优势是什么?


A:现在大家关注人形机器人的活动自由度,傅利叶更关注提升机器人的功能,而不是机器人本身。就像一个人类可以参加奥运会,也能做普通的工作。我们更加关注机器人整体的运动智能、认知智能、仿生设计、灵巧作业、商业应用、用户体验六个方面,这样的机器人才是好机器人。


2025年行业内人形机器人产量将提升10倍


Q:包括GR-1在内,你对目前这两款产品今年或明年的整体销售目标有预期吗?


A:目前计划是小批量量产人形机器人,还远远没有达到大批量量产阶段。今年整个行业量产规模我认为是是数百台,但是一些产品具有复制性,明年行业人形机器人产量能够以10倍速度增长,具体的量现在难以预测。


Q:人形机器人逐渐走向量产,相关零部件供应链近两年是否发生变化?


A:人形机器人的量产成本无论是10万元还是20万元,对于现有行业来说的影响都不明显,我们希望机器人量产后能达到产品级,有用且可靠。


人形机器人的供应链和汽车行业高度相似,大约40%零部件接近消费电子,因此消费电子、电动汽车供应链的良好基础,让中国机器人产业领先,能让未来的人形机器人产品价格低至消费者买得起,但这个前提是人形机器人足够有用,目前人形机器人行业发展还没达到第一步。


Q:触控单元作为一号部件容易导致成本增加,傅利叶在这一方面有何降本方式?


A:触摸传感器单元可拆换,所以我们考虑的主要成本是加工和耗件成本。我们将整个触觉传感器的接口统一化,以方便拆换。另外,由于触觉传感器有差异,因此只要统一接口,就能更替手指等零部件。


Q:不同场景对于机器人手指可能有不同要求,傅利叶未来可能推出二指、三指的机器人吗?


A:从通用人形机器人角度看,我们不会做二指、三指,因为人的手指是五根手指,从业务操作泛化性来看,五根手指的人形机器人可以像人类般操作,从而采集真实数据进行泛化,这条路线能够让机器人更接近人类。傅利叶推出统一化的接口,客户可以针对应用需求,自己添加模块。


Q:傅利叶的人形机器人技术路线是怎样的,与其他厂家有什么差异?


A:我们的机器人是“Made for AI”的这样一个概念,会更加侧重把机器人的本体做好,把它本身的潜能、活动度、运动性能做扎实。


算法层面上,我们自己会做一些底层的算法调试,另外和一些知名院校联合开发,与一些公司合作来进行实现。所以基本上一些最前沿的,包括有突破性的最新的算法架构、训练方式,在我们本体上都在做相应的部署和实践。而且所获得的一些成果也是非常令人惊奇的。


Q:傅利叶的人形机器人已经在银行、工厂等多个场景应用,傅利叶如何分配人力?


A:人形机器人落地效果最明显的是回报率高场景。比如某个场景有痛点却没得到满足,需要根据客户需求定义人形机器人的功能优先级。


技术指引未来机器人的发展方向,如果脱离大量技术去满足客户需求,对于我们来说只是一个短期利益;如果着眼长期技术方向,需要大量实验室和顶尖的研发团队确定技术方向,这是不紧急却非常重要的工作。


紧急、重要且能立刻落地的场景,需要一部分工程化能力,迅速满足客户需求。这其中,长期看技术判断,根据客户需求快速输出、反馈、迭代。


Q:不同场景的应用,对傅利叶机器人的迭代有哪些帮助?


A:机器人在应用中产生的数据储存在客户的服务器中,这些数据未来会成为各企业自己的资产,企业可以根据内部数据研发AI Agent。傅利叶做AI Agent本体,相当于身体和大脑。客户和第三方合作数据归属于客户,他们基于数据进行配置和训练,我们提供工具链和方法论。


我们会建设数据采集的训练中心,完成部分数据闭环。另外我们将任务中单独采集的数据集,结合网络公开数据、仿真数据集进行混合训练,进而完成部分具体任务。


端到端大模型融合机器人,将在今明两年有新进展


Q:上半年人形机器人出现了类似价格战的情况,下半年的竞争可能会激烈,傅利叶怎么应对?


A:首先傅利叶不打价格战,其次人形机器人行业目前还远远没到价格战的时期。


举个例子,假设人力成本一个月一万块,买一台售价一万块的人形机器人回家,你会问这款机器人能为你做哪些事情。我们更应该注重让人形机器人产品成熟,能够落地完成某些工作,产生真正的商业价值,而不是一开始就关注价格。


Q:机器人技术或产业方面,傅利叶面临的挑战是什么?


A:通用机器人只有将身体和大脑结合使用,才能产生作用。大脑方面,现在大模型能够识别图片、聊天,但没有具象化的生成能力。而机器人身体成本高昂,精度有限,也很难执行动作。


现在通用机器人应用场景近百个,总结起来存在的应用问题可分为七大类,因为机器人的大脑和身体能力不足,但场景问题未来会被逐渐解决。


Q:大模型与机器人结合,如何推动机器人发展?


A:最近半年我们看到不少的文献,可以通过大模型生成动作,让机器人做一些简单动作。另外,也可以通过强化学习让这个机器人学会一些反应要求很高,动作要求很快的动作,这些放在以前不敢想象。


现在机器人有50多个自由度,50多个电机,以前控制每个电机,要向每一行发指令。如果是全身运动控制,每一刻、每一秒都是不同的位置,不同力量的变化,通过传统编程控制简直是一个不可能完成的任务。


现在通过大模型,一个神经网络就可以控制人形机器人,而且机器人的动作可以产生一些意想不到的东西,因为是它自学的。你给它做了一些示范,它可以模仿学习,你给了它一些奖励函数,它可以通过强化学习快速反应。通过大模型直接给它一张图片,可以让它根据图片阐释下一个坐标的动作。目前,这些分块已经有非常顶尖的大佬和实验室研究。我们觉得大模型与机器人融合在今明两年能够看到更多进展。


Q:目前国内的机器人公司更多相信大模型+小模型路线,为什么傅利叶会选择端到端这条看起来“非主流”的技术路线?


A:我们觉得对于最底层的来说,比如说控制电机发力,首先就能够做一个位置。举一个例子,这时候用传统算法比如 PID算法以及控制算法,容易解决单个问题。


如果要做一些运动控制条件反射,或者实现走路等复杂动作,通过神经网络模仿学习、强化学习,这些方式能够让机器人达到一个非常好的精确运作,稳定度也比较好。


但是再往上,如果说是要真正意义完成一个复杂任务,我们觉得端到端的可能性还是最大的。端到端原本是一个小众技术,但现在端到端在自动驾驶领域变成了主流认知。人形机器人其实也一样,原大家看到的是传统任务规划,轨迹控制,这些东西都是人形机器人的底子。现在我们更想尝试端到端方案,解决原来的任务复杂度。


Q:机器人和自动驾驶发展相似,随着产品智能化不断提升,不少公司自研零部件以跟上智能化需求。傅利叶已经自研部分核心零部件,未来是否会自研芯片等关键零部件?


A:我们对人形机器执行器的关键模组是全自研,比如电机、减速机、驱动器、传感器等,目的是让整个机器人适配性能够达到最好。


目前芯片不在自研计划之内,但是未来不排除这个可能。我们觉得芯片性能会大大影响整机性能,我们可以把很多边缘侧计算放在执行器侧,很多算力放在本地。就像特斯拉FSD的大量计算在本地完成,大型服务器集群放在云端,通过连接云端完成复杂问题,需要高速响应的问题在本地解决,所以芯片的需求量未来会很大。


Q:芯片算力未来会多大?


A:算力越大,支撑的神经网络越大,理论上模型越大,机器人的知识储备量越大。目前算力瓶颈是,人形机器人的身材比较苗条,不能装上很多算力板。按照半导体发展情况,未来几年芯片算力可能提升十倍、百倍。


Q:人形机器人未来的终局会是什么?


A:现在有两种观点,一种是认为人形机器人行业将像国内电动汽车品牌,很多厂家有着不同的品牌,产品有不同的定位和价格,机器人行业生态丰富。另一种观点认为,可能会出现安卓、iOS般的巨头,具备一定AI能力。我们认为两种情况都有可能实现,傅利叶希望能推动机器人产品化,实现真正意义的产品泛化性。


文章来源于“智能涌现”,作者“田哲


AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
智能体

【开源免费】AutoGPT是一个允许用户创建和运行智能体的(AI Agents)项目。用户创建的智能体能够自动执行各种任务,从而让AI有步骤的去解决实际问题。

项目地址:https://github.com/Significant-Gravitas/AutoGPT


【开源免费】MetaGPT是一个“软件开发公司”的智能体项目,只需要输入一句话的老板需求,MetaGPT即可输出用户故事 / 竞品分析 / 需求 / 数据结构 / APIs / 文件等软件开发的相关内容。MetaGPT内置了各种AI角色,包括产品经理 / 架构师 / 项目经理 / 工程师,MetaGPT提供了一个精心调配的软件公司研发全过程的SOP。

项目地址:https://github.com/geekan/MetaGPT/blob/main/docs/README_CN.md

2
RAG

【开源免费】graphrag是微软推出的RAG项目,与传统的通过 RAG 方法使用向量相似性作为搜索技术不同,GraphRAG是使用知识图谱在推理复杂信息时大幅提高问答性能。

项目地址:https://github.com/microsoft/graphrag

【开源免费】Dify是最早一批实现RAG,Agent,模型管理等一站式AI开发的工具平台,并且项目方一直持续维护。其中在任务编排方面相对领先对手,可以帮助研发实现像字节扣子那样的功能。

项目地址:https://github.com/langgenius/dify


【开源免费】RAGFlow是和Dify类似的开源项目,该项目在大文件解析方面做的更出色,拓展编排方面相对弱一些。

项目地址:https://github.com/infiniflow/ragflow/tree/main


【开源免费】phidata是一个可以实现将数据转化成向量存储,并通过AI实现RAG功能的项目

项目地址:https://github.com/phidatahq/phidata


【开源免费】TaskingAI 是一个提供RAG,Agent,大模型管理等AI项目开发的工具平台,比LangChain更强大的中间件AI平台工具。

项目地址:https://github.com/TaskingAI/TaskingAI