超越Transformer和Mamba的新架构,刚刚诞生了。斯坦福UCSD等机构研究者提出的TTT方法,直接替代了注意力机制,语言模型方法从此或将彻底改变。
超越Transformer和Mamba的新架构,刚刚诞生了。斯坦福UCSD等机构研究者提出的TTT方法,直接替代了注意力机制,语言模型方法从此或将彻底改变。
Transformer很强,Transformer很好,但Transformer在处理时序数据时存在一定的局限性。
多模态大模型,也有自己的CoT思维链了! 厦门大学&腾讯优图团队提出一种名为“领唱员(Cantor)”的决策感知多模态思维链架构,无需额外训练,性能大幅提升。
指代分割 (Referring Image Segmentation,RIS) 是一项极具挑战性的多模态任务,要求算法能够同时理解精细的人类语言和视觉图像信息,并将图像中句子所指代的物体进行像素级别的分割。
指代分割 (Referring Image Segmentation,RIS) 是一项极具挑战性的多模态任务,要求算法能够同时理解精细的人类语言和视觉图像信息,并将图像中句子所指代的物体进行像素级别的分割。
继Mamba之后,又一敢于挑战Transformer的架构诞生了!
Transformer 的重要性无需多言,目前也有很多研究团队致力于改进这种变革性技术,其中一个重要的改进方向是提升 Transformer 的效率,比如让其具备自适应计算能力,从而可以节省下不必要的计算。
谷歌终于更新了Transformer架构。最新发布的Mixture-of-Depths(MoD),改变了以往Transformer计算模式。它通过动态分配大模型中的计算资源,跳过一些不必要计算,显著提高训练效率和推理速度。