打造图像编辑领域的ImageNet?苹果用Nano Banana开源了一个超大数据集
打造图像编辑领域的ImageNet?苹果用Nano Banana开源了一个超大数据集在开放研究领域里,苹果似乎一整个脱胎换骨,在纯粹的研究中经常会有一些出彩的工作。这次苹果发布的研究成果的确出人意料:他们用谷歌的 Nano-banana 模型做个了视觉编辑领域的 ImageNet。
在开放研究领域里,苹果似乎一整个脱胎换骨,在纯粹的研究中经常会有一些出彩的工作。这次苹果发布的研究成果的确出人意料:他们用谷歌的 Nano-banana 模型做个了视觉编辑领域的 ImageNet。
这些刷屏的AI图片,你刷到了没?就是那种——和自己专属emoji合影的黏土风照片,画风长这样:本来以为是NanoBanana整的新玩法,结果点开评论区一看:嗐,原来是美图自家的AI Agent——叫RoboNeo~
Gambo 称自己为 “世界上第一个 Game Vibe Coding Agent”。用户只需描述游戏类型、主题或风格,AI 就会自动生成场景、角色、交互与音效,并把这些内容编织成一个可玩的世界。
在 AIGC 的下一个阶段,图像编辑(Image Editing)正逐渐取代一次性生成,成为检验多模态模型理解、生成与推理能力的关键场景。我们该如何科学、公正地评测这些图像编辑模型?
大型语言模型(LLM)本身很强大,但知识是静态的,有时会“胡说八道”。为了解决这个问题,我们可以让它去外部知识库(比如维基百科、搜索引擎)里“检索”信息,这就是所谓的“检索增强生成”(RAG)。
斯坦福等新框架,用在线强化学习让智能体系统“以小搏大”,领先GPT-4o—— AgentFlow,是一种能够在线优化智能体系统的新范式,可以持续提升智能体系统对于复杂问题的推理能力。
在这片喧嚣和迷雾之中,我们迫切需要一个清晰的导航图。而Jason Wei正是提供这份地图的最佳人选之一。他现任Meta超级智能实验室(Meta Super Intelligence Labs)的研究科学家,此前在OpenAI工作了两年,o1研发的主导者,更早之前是Google Brain的科学家。
在 AI 时代,最赚钱的可能不是那些会写代码的人,而是那些能把专业经验「产品化」的人。大量专业人士手里握着宝贵的行业 know-how,却找不到一个合适的方式把它变成持续收入。直到我看到 MuleRun,才发现有人正在尝试打破这个困局——让不懂代码的专业人士,也能把自己的工作流变成可交易的「商品」。
大家好,我是袋鼠帝。 国庆那几天,刷抖音,偶然刷到了一个看起来挺🐂🍺的AI工具。 视频里,一个哥们只是发布了一个任务,Agent就自动打开了小红书网站,登录账号,上传图片,写入标题和笔记内容,最后自己
近日,Zen7 Labs正式提出DePA(Decentralized Payment Agent,去中心化支付智能体)概念,并率先在GitHub 上开源其核心产品Zen7 Payment Agent。Zen7 Labs 是一家专注于智能计算与 Agent 技术创新的国际化团队