
迈向推理时代:900+篇参考文献揭示长链思维的前世今生,最全综述来了
迈向推理时代:900+篇参考文献揭示长链思维的前世今生,最全综述来了近年来,大模型(Large Language Models, LLMs)在数学、编程等复杂任务上取得突破,OpenAI-o1、DeepSeek-R1 等推理大模型(Reasoning Large Language Models,RLLMs)表现尤为亮眼。但它们为何如此强大呢?
近年来,大模型(Large Language Models, LLMs)在数学、编程等复杂任务上取得突破,OpenAI-o1、DeepSeek-R1 等推理大模型(Reasoning Large Language Models,RLLMs)表现尤为亮眼。但它们为何如此强大呢?
随着 OpenAI o1 和 DeepSeek R1 的爆火,大语言模型(LLM)的推理能力增强和测试时扩展(TTS)受到广泛关注。然而,在复杂推理问题中,如何精准评估模型每一步回答的质量,仍然是一个亟待解决的难题。传统的过程奖励模型(PRM)虽能验证推理步骤,但受限于标量评分机制,难以捕捉深层逻辑错误,且其判别式建模方式限制了测试时的拓展能力。
研究发现,推理模型(如DeepSeek-R1、o1)遇到「缺失前提」(MiP)的问题时,这些模型往往表现失常:回答长度激增、计算资源浪费。本文基于马里兰大学和利哈伊大学的最新研究,深入剖析推理模型在MiP问题上的「过度思考」现象,揭示其背后的行为模式,带你一窥当前AI推理能力的真实边界。
Qwen 3还未发布,但已发布的Qwen系列含金量还在上升。2个月前,李飞飞团队基于Qwen2.5-32B-Instruct 模型,以不到50美元的成本训练出新模型 S1-32B,取得了与 OpenAI 的 o1 和 DeepSeek 的 R1 等尖端推理模型数学及编码能力相当的效果。如今,他们的视线再次投向了这个国产模型。
OpenAI o1/o3-mini级别的代码推理模型竟被抢先开源!UC伯克利和Together AI联合推出的DeepCoder-14B-Preview,仅14B参数就能媲美o3-mini,开源代码、数据集一应俱全,免费使用。
推理增强型大语言模型LRM(如OpenAI的o1、DeepSeek R1和Google的Flash Thinking)通过在生成最终答案前显式生成中间推理步骤,在复杂问题解决方面展现了卓越性能。然而,对这类模型的控制仍主要依赖于传统的输入级操作,如提示工程(Prompt Engineering)等方法,而你可能已经发现这些方法存在局限性。
最近,像 OpenAI o1/o3、DeepSeek-R1 这样的大型推理模型(Large Reasoning Models,LRMs)通过加长「思考链」(Chain-of-Thought,CoT)在推理任务上表现惊艳。
刚刚开源的新基准测试PaperBench,6款前沿大模型驱动智能体PK复现AI顶会论文,新版Claude-3.5-Sonnet显著超越o1/r1排名第一。与去年10月OpenAI考验Agent机器学习代码工程能力MLE-Bnch相比,PaperBench更考验综合能力,不再是只执行单一任务。
由于 DeepSeek R1 和 OpenAI o1 等推理模型(LRM,Large Reasoning Model)带来了新的 post-training scaling law,强化学习(RL,Reinforcement Learning)成为了大语言模型能力提升的新引擎。然而,针对大语言模型的大规模强化学习训练门槛一直很高:
晚点:过去将近 6 个月,AI 领域最重要的两件事,一是 OpenAI 去年 9 月 o1 发布,另一个是近期 DeepSeek 在发布 R1 后掀起全民狂潮。我们可以从这两个事儿开始聊。你怎么看 o1 和 R1 分别的意义?