
你是天才竟然比白痴得分低?卡梅隆和斯坦福最新,你是Assistant会让LLM降低性能,Roleplay究竟该怎么用
你是天才竟然比白痴得分低?卡梅隆和斯坦福最新,你是Assistant会让LLM降低性能,Roleplay究竟该怎么用在Prompt工程领域,角色扮演提示是否能够有效提高大型语言模型(LLM)的性能一直是一个备受关注的话题。
在Prompt工程领域,角色扮演提示是否能够有效提高大型语言模型(LLM)的性能一直是一个备受关注的话题。
MME-Finance 是一个专为金融领域设计的多模态基准测试,由同花顺财经旗下的 HiThink 研究团队联合多家高校共同开发,旨在评估和提升多模态大型语言模型(MLLMs)在金融领域的专业理解和推理能力。
现在正是多模态大模型的时代,图像、视频、音频、3D、甚至气象运动都在纷纷与大型语言模型的原生文本模态组合。而浙江大学及其计算机创新技术研究院的一个数十人团队也将结构化数据(包括数据库、数仓、表格、json 等)视为了一种独立模态。
在金融市场中,动态知识图谱(Dynamic Knowledge Graphs,DKGs)是一种表达对象之间随时间变化的多种关系的流行结构。它们可以有效地表示从复杂的非结构化数据源(如文本或图像)中提取的信息。在金融应用中,基于从金融新闻文章中获取的信息,DKGs 可用于检测战略性主题投资的趋势。
Ichigo[1] 是一个开放的、持续进行的研究项目,目标是将基于文本的大型语言模型(LLM)扩展,使其具备原生的“听力”能力。
近年来,生成式大型语言模型(LLMs)在各类语言任务中的表现令人瞩目,但在医疗领域的应用面临诸多挑战,尤其是在减少诊断错误和避免对患者造成伤害方面。
CGPO框架通过混合评审机制和约束优化器,有效解决了RLHF在多任务学习中的奖励欺骗和多目标优化问题,显著提升了语言模型在多任务环境中的表现。CGPO的设计为未来多任务学习提供了新的优化路径,有望进一步提升大型语言模型的效能和稳定性。
大型语言模型在学习概念时竟然会形成令人惊讶的几何结构,比如代码和数学特征会形成一个「叶(lobe)」,类似于我们在做磁共振功能成像时看到的大脑功能性脑叶。这说明什么呢?
Ferret-UI 2 是苹果研究团队最新发表的一款先进的多模态大型语言模型(MLLM),旨在实现跨多个平台的通用用户界面(UI)理解。
来自华东师范大学、南洋理工和中科院等高校的联合研究团队提出了一种新颖的人工智能教育框架“场景-对象-评估”(SOE),旨在利用大型语言模型(LLMs)构建能够模拟人类学生行为和个体差异的虚拟学生代理(LVSA)。