
PUMA:商汤科技迈向多模态任务统一框架的多粒度视觉生成模型
PUMA:商汤科技迈向多模态任务统一框架的多粒度视觉生成模型PUMA(emPowering Unified MLLM with Multi-grAnular visual generation)是一项创新的多模态大型语言模型(MLLM),由商汤科技联合来自香港中文大学、港大和清华大学的研究人员共同开发。它通过统一的框架处理和生成多粒度的视觉表示,巧妙地平衡了视觉生成任务中的多样性与可控性。
PUMA(emPowering Unified MLLM with Multi-grAnular visual generation)是一项创新的多模态大型语言模型(MLLM),由商汤科技联合来自香港中文大学、港大和清华大学的研究人员共同开发。它通过统一的框架处理和生成多粒度的视觉表示,巧妙地平衡了视觉生成任务中的多样性与可控性。
大型语言模型(LLM)的出现统一了语言生成任务,并彻底改变了人机交互。然而,在图像生成领域,能够在单一框架内处理各种任务的统一模型在很大程度上仍未得到探索。近日,智源推出了新的扩散模型架构 OmniGen,一种新的用于统一图像生成的多模态模型。
TS-Reasoner是一个创新的多步推理框架,结合了大型语言模型的上下文学习和推理能力,通过程序化多步推理、模块化设计、自定义模块生成和多领域数据集评估,有效提高了复杂时间序列任务的推理能力和准确性。实验结果表明,TS-Reasoner在金融决策、能源负载预测和因果关系挖掘等多个任务上,相较于现有方法具有显著的性能优势。
AI 开发者之所以一致认为编程的重要性,是有原因的:大型语言模型编程能力越强,它回答与软件无关的其他类型问题的能力也越强。
哈佛大学研究了大型语言模型在回答晦涩难懂和有争议问题时产生「幻觉」的原因,发现模型输出的准确性高度依赖于训练数据的质量和数量。研究结果指出,大模型在处理有广泛共识的问题时表现较好,但在面对争议性或信息不足的主题时则容易产生误导性的回答。
现如今,大型语言模型(LLM)生成的内容已经充斥了整个互联网,并且这些模型还能模仿各种类似真人的语气和行文风格,让人难以分辨眼前的文本究竟来自人类还是 AI。
大型语言模型(LLMs)虽然在适应新任务方面取得了长足进步,但它们仍面临着巨大的计算资源消耗,尤其在复杂领域的表现往往不尽如人意。
大型语言模型 (LLM) 在各种自然语言处理和推理任务中表现出卓越的能力,某些应用场景甚至超越了人类的表现。然而,这类模型在最基础的算术问题的表现上却不尽如人意。
在当今科技界,关于人工智能是否被过度炒作的争论从未停息。然而,很少有像谷歌 DeepMind 的安全研究专家和机器学习科学家 Nicholas Carlini 这样的专家,用亲身经历为我们提供了一个独特的视角。通过他的文章,我们看到了大型语言模型(LLM)在实际应用中的强大能力和多样性。这些并非空洞的营销宣传,而是切实可以改变工作方式、提高生产效率、激发创意的工具。
按照传统,FDA会每年秋季都会更新一次人工智能数据库,目前,FDA数据库中共有950个设备。 截至2024年10月,还没有任何使用生成式人工智能或由大型语言模型驱动的设备获批。