
大模型训练成本降一半!厦大和vivo联合推出预训练新策略,给LLM降本增效
大模型训练成本降一半!厦大和vivo联合推出预训练新策略,给LLM降本增效近年来,大语言模型(Large Language Models, LLMs)的研究取得了重大进展,并对各个领域产生了深远影响。然而,LLMs的卓越性能来源于海量数据的大规模训练,这导致LLMs的训练成本明显高于传统模型。
近年来,大语言模型(Large Language Models, LLMs)的研究取得了重大进展,并对各个领域产生了深远影响。然而,LLMs的卓越性能来源于海量数据的大规模训练,这导致LLMs的训练成本明显高于传统模型。
内存占用小,训练表现也要好……大模型训练成功实现二者兼得。 来自北理、北大和港中文MMLab的研究团队提出了一种满足低秩约束的大模型全秩训练框架——Fira,成功打破了传统低秩方法中内存占用与训练表现的“非此即彼”僵局。
最近,大模型训练遭恶意攻击事件已经刷屏了。就在刚刚,Anthropic也发布了一篇论文,探讨了前沿模型的巨大破坏力,他们发现:模型遇到危险任务时会隐藏真实能力,还会在代码库中巧妙地插入bug,躲过LLM和人类「检查官」的追踪!
FP8通过其独特的数值表示方式,能够在保持一定精度的同时,在大模型训练中提高训练速度、节省内存占用,最终降低训练成本。
在 AI 领域,有两大场景对 GPU 的需求最大,一个是模型训练,另一个是 AI 推理任务。
越来越多人开始关注大模型,很多做工程开发的同学问我怎么入门大模型训练推理系统软件(俗称大模型Infra)。
大模型作为当下 AI 工业界和学术界当之无愧的「流量之王」,吸引了大批学者和企业投入资源去研究与训练。随着规模越做越大,系统和工程问题已经成了大模型训练中绕不开的难题。例如在 Llama3.1 54 天的训练里,系统会崩溃 466 次,平均 2.78 小时一次!
HBM因AI大模型训练需求爆增,市场火热。
大模型训练推理神作,又更新了!
Anthropic首席执行官表示,当前AI模型训练成本是10亿美元,未来三年,这个数字可能会上升到100亿美元甚至1000亿美元。要知道,GPT-4o这个曾经最大的模型也只用了1亿美元。千亿美刀,究竟花在了哪里?