
刚刚!阿里发新模型,幻觉率爆降70%
刚刚!阿里发新模型,幻觉率爆降70%智东西9月15日报道,今天,阿里巴巴通义实验室推出了FunAudio-ASR端到端语音识别大模型。这款模型通过创新的Context模块,针对性优化了“幻觉”、“串语种”等关键问题,在高噪声的场景下,幻觉率从78.5%下降至10.7%,下降幅度接近70%。
智东西9月15日报道,今天,阿里巴巴通义实验室推出了FunAudio-ASR端到端语音识别大模型。这款模型通过创新的Context模块,针对性优化了“幻觉”、“串语种”等关键问题,在高噪声的场景下,幻觉率从78.5%下降至10.7%,下降幅度接近70%。
幻觉不是 bug,是数学上的宿命。 谢菲尔德大学的最新研究证明,大语言模型的幻觉问题在数学上不可避免—— 即使用完美的训练数据也无法根除。 而更为扎心的是,OpenAI 提出的置信度阈值方案虽能减少幻
幻觉并非什么神秘现象,而是现代语言模型训练和评估方式下必然的统计结果。它是一种无意的、因不确定而产生的错误。根据OpenAI9月4号论文的证明,模型产生幻觉(Hallucination),是一种系统性缺陷。
想象一下,如果 ChatGPT 等 AI 大模型在生成的时候,能把自己不确定的地方都标记出来,你会不会对它们生成的答案放心很多?
在当前由大语言模型(LLM)驱动的技术范式中,检索增强生成(RAG)已成为提升模型知识能力与缓解「幻觉」的核心技术。然而,现有 RAG 系统在面对需多步逻辑推理任务时仍存在显著局限,具体挑战如下:
OpenAI好不容易发了篇新论文,还是给GPT-5挽尊?
周末在家扒拉上周更新的论文的时候,看到一篇我自己一直非常关心的领域的论文,而且还是来自发论文发的越来越少的OpenAI。
OpenAI重磅结构调整:ChatGPT「模型行为」团队并入Post-Training,前负责人Joanne Jang负责新成立的OAI Labs。而背后原因,可能是他们最近的新发现:评测在奖励模型「幻觉」,模型被逼成「应试选手」。一次组织重组+评测范式重构,也许正在改写AI的能力边界与产品形态。
AI 最臭名昭著的 Bug 是什么?不是代码崩溃,而是「幻觉」—— 模型自信地编造事实,让你真假难辨。这个根本性挑战,是阻碍我们完全信任 AI 的关键障碍。
罕见,着实是太罕见。 一觉醒来,AI圈的两大顶流——OpenAI和Anthropic,竟然破天荒地联手合作了。