Stable-DiffCoder超越自回归模型!扩散模型在代码生成取得新突破
Stable-DiffCoder超越自回归模型!扩散模型在代码生成取得新突破扩散语言模型(Diffusion Language Models, DLLMs)因其多种潜在的特性而备受关注,如能加速的非自回归并行生成特性,能直接起草编辑的特性,能数据增强的特性。然而,其模型能力往往落后于同等规模的强力自回归(AR)模型。
扩散语言模型(Diffusion Language Models, DLLMs)因其多种潜在的特性而备受关注,如能加速的非自回归并行生成特性,能直接起草编辑的特性,能数据增强的特性。然而,其模型能力往往落后于同等规模的强力自回归(AR)模型。
AI生成一张图片,你愿意等多久?在主流扩散模型还在迭代中反复“磨叽”、让用户盯着进度条发呆时,阿里智能引擎团队直接把进度条“拉爆”了——5秒钟,到手4张2K级高清大图。
扩散语言模型(Diffusion LLMs, dLLMs)因支持「任意顺序生成」和并行解码而备受瞩目。直觉上,打破传统自回归(AR)「从左到右」的束缚,理应赋予模型更广阔的解空间,从而在数学、代码等复杂任务上解锁更强的推理潜力。
北邮最新综述探讨了文生图扩散模型的可控生成技术,总结了在文本条件之外引入新条件信号的方法,从任务和方法两个层面梳理了可控生成技术。
站在 2026 年的开端回望,LLM 的架构之争似乎进入了一个新的微妙阶段。过去几年,Transformer 架构以绝对的统治力横扫了人工智能领域,但随着算力成本的博弈和对推理效率的极致追求,挑战者们从未停止过脚步。
近年来,视频扩散模型在 “真实感、动态性、可控性” 上进展飞快,但它们大多仍停留在纯 RGB 空间。模型能生成好看的视频,却缺少对三维几何的显式建模。这让许多世界模型(world model)导向的应用(空间推理、具身智能、机器人、自动驾驶仿真等)难以落地,因为这些任务不仅需要像素,还需要完整地模拟 4D 世界。
在多模态大模型(MLLMs)领域,思维链(CoT)一直被视为提升推理能力的核心技术。然而,面对复杂的长程、视觉中心任务,这种基于文本生成的推理方式正面临瓶颈:文本难以精确追踪视觉信息的变化。形象地说,模型不知道自己想到哪一步了,对应图像是什么状态。
近日,清华朱军等团队提出了一种统一的多模态生成框架 UniCardio,在单扩散模型中同时实现了心血管信号的去噪、插补与跨模态生成,为真实场景下的人工智能辅助医疗提供了一种新的解决思路。
在文生图(Text-to-Image)和视频生成领域,以FLUX.1、Emu3为代表的扩散模型与自回归模型已经能生成极其逼真的画面。
尽管扩散模型在单图像生成上已经日渐成熟,但当任务升级为高度定制化的多实例图像生成(Multi-Instance Image Generation, MIG)时,挑战随之显现: