
用LaTRO框架,通过自我奖励机制来激发LLM潜在推理能力,基准上提升12.5% |Salesforce重磅
用LaTRO框架,通过自我奖励机制来激发LLM潜在推理能力,基准上提升12.5% |Salesforce重磅大规模语言模型(LLMs)已经在自然语言处理任务中展现了卓越的能力,但它们在复杂推理任务上依旧面临挑战。推理任务通常需要模型具有跨越多个步骤的推理能力,这超出了LLMs在传统训练阶段的表现。
大规模语言模型(LLMs)已经在自然语言处理任务中展现了卓越的能力,但它们在复杂推理任务上依旧面临挑战。推理任务通常需要模型具有跨越多个步骤的推理能力,这超出了LLMs在传统训练阶段的表现。
如何更好地设计提示词(Prompt)一直是大家关注的焦点。最近,一个独特的研究视角引起了广泛关注:将LLMs视为“演员”,将提示词视为“剧本”,将模型输出视为“表演”。
在当前AI写作工具迅速发展的背景下,华盛顿大学的这项研究选择了一个独特的切入点。研究团队没有去探讨AI是否应该用于创意写作这个争议性话题,而是直接走进了那些已经在使用AI的作家的创作现场。这18位作家来自不同背景:
在Prompt工程领域,角色扮演提示是否能够有效提高大型语言模型(LLM)的性能一直是一个备受关注的话题。
AI视频产品越来越卷了。 一拖一拽、输入提示词,点击生成,便在空白画布上搭建起了一个前段时间在网上很火的Flux+图生视频的工作流。
开源社区 DiamantAI 的主理人 Nir Diamant 发布了一套提示词工程技术库,系统性地教我们如何提高和 AI 的沟通技巧,更好发挥 AI 的潜能。
打开AI大模型助手,问个问题,全是正确的废话,又臭又长。让它写个文案,都是套话,根本用不了。这还算好的。有时候,它答着答着就会胡言乱语,让你哭笑不得。
在Prompt工程领域,规划任务一直以来都是一个巨大的挑战,因为这要求大语言模型(LLMs)不仅能够理解自然语言,还能有效执行复杂推理和应对长时间跨度的操作。
是李继刚贯彻 read in prompt out 的七个提示词。
近日,伊利诺伊大学香槟分校的研究团队发布了一篇开创性论文,首次从理论层面证明了大语言模型(LLM)中的prompt机制具有图灵完备性。这意味着,通过合适的prompt设计,一个固定大小的Transformer模型理论上可以计算任何可计算函数。这一突破性发现为prompt工程提供了坚实的理论基础。