无VAE扩散模型! 清华&可灵团队「撞车」谢赛宁团队「RAE」
无VAE扩散模型! 清华&可灵团队「撞车」谢赛宁团队「RAE」长期以来,扩散模型的训练通常依赖由变分自编码器(VAE)构建的低维潜空间表示。然而,VAE 的潜空间表征能力有限,难以有效支撑感知理解等核心视觉任务,同时「VAE + Diffusion」的范式在训练
长期以来,扩散模型的训练通常依赖由变分自编码器(VAE)构建的低维潜空间表示。然而,VAE 的潜空间表征能力有限,难以有效支撑感知理解等核心视觉任务,同时「VAE + Diffusion」的范式在训练
时隔两月,Baichuan-M2 Plus重磅出世!成为业内首个循证增强的医疗大模型,幻觉要比DeepSeek-R1低3倍,可信度比肩资深临床专家。新模型将「循证医学」理念深度融入训练和推理,通过首创「六源循证范式」,模拟人类医生思维,有效辨别不同层级医学证据、评估其可靠性,并在回答中优先引用高等级证据。
当OpenAI为ChatGPT各种造势时,中国模型也在凭实力圈粉老外。最近,爱彼迎(Airbnb)联合创始人兼CEO Brian Chesky的一番公开表态掀起波澜:要知道Brian Chesky和奥特曼还是挚友,但当涉及自家应用产品整合时,他却没给老朋友留面子,直言OpenAI提供的连接工具还“没有完全准备好”。
随着多模态大模型的不断演进,指令引导的图像编辑(Instruction-guided Image Editing)技术取得了显著进展。然而,现有模型在遵循复杂、精细的文本指令方面仍面临巨大挑战,往往需要用户进行多次尝试和手动筛选,难以实现稳定、高质量的「一步到位」式编辑。
香港科技大学KnowComp实验室提出基于《欧盟人工智能法案》和《GDPR》的LLM安全新范式,构建合规测试基准并训练出性能优异的推理模型,为大语言模型安全管理提供了新方向。
年初的 DeepSeek-R1,带来了大模型强化学习(RL)的火爆。无论是数学推理、工具调用,还是多智能体协作,GRPO(Group Relative Policy Optimization)都成了最常见的 RL 算法。
作为视频创作者,你是否曾梦想复刻《盗梦空间》里颠覆物理的旋转镜头,或是重现《泰坦尼克号》船头经典的追踪运镜?
学术展示视频作为科研交流的重要媒介,制作过程仍高度依赖人工,需要反复进行幻灯片设计、逐页录制和后期剪辑,往往需要数小时才能产出几分钟的视频,效率低下且成本高昂,这凸显了推动学术展示视频自动化生成的必要性。
近日,范鹤鹤(浙江大学)、杨易(浙江大学)、Mohan Kankanhalli(新加坡国立大学)和吴飞(浙江大学)四位老师提出了一种具有划时代意义的神经网络基础操作——Translution。 该研究认为,神经网络对某种类型数据建模的本质是:
整个Hugging Face的趋势版里,前4有3个OCR,甚至Qwen3-VL-8B也能干OCR的活,说一句全员OCR真的不过分。然后在我上一篇讲DeepSeek-OCR文章的评论区里,有很多朋友都在把DeepSeek-OCR跟PaddleOCR-VL做对比,也有很多人都在问,能不能再解读一下百度那个OCR模型(也就是PaddleOCR-VL)。