
一手训练,多手应用:国防科大提出灵巧手抓取策略迁移新方案
一手训练,多手应用:国防科大提出灵巧手抓取策略迁移新方案在机器人研究领域,抓取任务始终是机器人操作中的一个关键问题。这项任务的核心目标是控制机械手移动到合适位置,并完成对物体的抓取。近年来,基于学习的方法在提高对不同物体的抓取的泛化能力上取得了显著进展,但针对机械手本身,尤其是复杂的灵巧手(多指机械手)之间的泛化能力仍然缺乏深入研究。由于灵巧手在不同形态和几何结构上存在显著差异,抓取策略的跨手转移一直存在挑战。
在机器人研究领域,抓取任务始终是机器人操作中的一个关键问题。这项任务的核心目标是控制机械手移动到合适位置,并完成对物体的抓取。近年来,基于学习的方法在提高对不同物体的抓取的泛化能力上取得了显著进展,但针对机械手本身,尤其是复杂的灵巧手(多指机械手)之间的泛化能力仍然缺乏深入研究。由于灵巧手在不同形态和几何结构上存在显著差异,抓取策略的跨手转移一直存在挑战。
大语言模型(Large Language Models, LLMs)的强大能力推动了 LLM Agent 的迅速发展。围绕增强 LLM Agent 的能力,近期相关研究提出了若干关键组件或工作流。然而,如何将核心要素集成到一个统一的框架中,能够进行端到端优化,仍然是一个亟待解决的问题。
人工智能的能力会在未来几年内得到显著提升
在医疗领域中,大语言模型已经有了广泛的研究。然而,这些进展主要依赖于英语的基座模型,并受制于缺乏多语言医疗专业数据的限制,导致当前的医疗大模型在处理非英语问题时效果不佳。
2022年,AI大牛Ilya Sutskever曾预测:「随着时间推移,人类预期和AI实际表现差异可能会缩小」。
告别传统指令微调,大模型特定任务性能提升有新方法了。 一种新型开源增强知识框架,可以从公开数据中自动提取相关知识,针对性提升任务性能。 与基线和SOTA方法对比,本文方法在各项任务上均取得了更好的性能。
Sutton 等研究人员近期在《Nature》上发表的研究《Loss of Plasticity in Deep Continual Learning》揭示了一个重要发现:在持续学习环境中,标准深度学习方法的表现竟不及浅层网络。研究指出,这一现象的主要原因是 "可塑性损失"(Plasticity Loss):深度神经网络在面对非平稳的训练目标持续更新时,会逐渐丧失从新数据中学习的能力。
近日,机器学习研究员、畅销书《Python 机器学习》作者 Sebastian Raschka 又分享了一篇长文,主题为《从头开始构建一个 GPT 风格的 LLM 分类器》。
在这种背景下,研究团队提出了一个全新的框架:SubgoalXL,结合了子目标(subgoal)证明策略与专家学习(expert learning)方法,在 Isabelle 中实现了形式化定理证明的性能突破。
香港中文大学等机构的研究团队通过深度强化学习(DQN)开发了一种3D打印路径规划器,有效提升了打印效率和精度,为智能制造开辟了新途径。