
CVPR 2024 Highlight | 北航等发布「时间特征维护」:无需训练,极致压缩加速Diffusion
CVPR 2024 Highlight | 北航等发布「时间特征维护」:无需训练,极致压缩加速Diffusion拯救4bit扩散模型精度,仅需时间特征维护——以超低精度量化技术重塑图像内容生成!
拯救4bit扩散模型精度,仅需时间特征维护——以超低精度量化技术重塑图像内容生成!
基于 Transformer架构的大型语言模型在各种基准测试中展现出优异性能,但数百亿、千亿乃至万亿量级的参数规模会带来高昂的服务成本。例如GPT-3有1750亿参数,采用FP16存储,模型大小约为350GB,而即使是英伟达最新的B200 GPU 内存也只有192GB ,更不用说其他GPU和边缘设备。
通过高保真合成语音与真人语音无异。
本⽂介绍由清华等⾼校联合推出的⾸个开源的⼤模型⽔印⼯具包 MarkLLM。MarkLLM 提供了统⼀的⼤模型⽔印算法实现框架、直观的⽔印算法机制可视化⽅案以及系统性的评估模块,旨在⽀持研究⼈员⽅便地实验、理解和评估最新的⽔印技术进展。通过 MarkLLM,作者期望在给研究者提供便利的同时加深公众对⼤模型⽔印技术的认知,推动该领域的共识形成,进⽽促进相关研究的发展和推⼴应⽤。
在现实世界的机器学习应用中,随时间变化的分布偏移是常见的问题。这种情况被构建为时变域泛化(EDG),目标是通过学习跨领域的潜在演变模式,并利用这些模式,使模型能够在时间变化系统中对未见目标域进行良好的泛化。然而,由于 EDG 数据集中时间戳的数量有限,现有方法在捕获演变动态和避免对稀疏时间戳的过拟合方面遇到了挑战,这限制了它们对新任务的泛化和适应性。
DeepMind最近发表的一篇论文提出用混合架构的方法解决Transformer模型的推理缺陷。将Transformer的NLU技能与基于GNN的神经算法推理器(NAR)的强大算法推理能力相结合,可以实现更加泛化、稳健、准确的LLM推理。
当前主流的视觉语言模型(VLM)主要基于大语言模型(LLM)进一步微调。因此需要通过各种方式将图像映射到 LLM 的嵌入空间,然后使用自回归方式根据图像 token 预测答案。
在三维生成建模的研究领域,现行的两大类 3D 表示方法要么基于拟合能力不足的隐式解码器,要么缺乏清晰定义的空间结构难以与主流的 3D 扩散技术融合。来自中科大、清华和微软亚洲研究院的研究人员提出了 GaussianCube,这是一种具有强大拟合能力的显式结构化三维表示,并且可以无缝应用于目前主流的 3D 扩散模型中。
「原来以为语料已经匮乏了,大模型训练已经没有语料了,实际上不是的,数据还远远没有跑光」。
GPT-4o掀起一股全模态(Omni-modal)热潮,去年的热词多模态仿佛已经不够看了。