
大模型不再是路痴!空间推理的答案是RAG:旅游规划、附近推荐全解锁
大模型不再是路痴!空间推理的答案是RAG:旅游规划、附近推荐全解锁Spatial-RAG结合了空间数据库和大型语言模型(LLM)的能力,能够处理复杂的空间推理问题。通过稀疏和密集检索相结合的方式,Spatial-RAG可以高效地从空间数据库中检索出满足用户查询的空间对象,并利用LLM的语义理解能力对这些对象进行排序和生成最终答案。
Spatial-RAG结合了空间数据库和大型语言模型(LLM)的能力,能够处理复杂的空间推理问题。通过稀疏和密集检索相结合的方式,Spatial-RAG可以高效地从空间数据库中检索出满足用户查询的空间对象,并利用LLM的语义理解能力对这些对象进行排序和生成最终答案。
你是否曾经用最先进的大语言模型处理企业文档,却发现它把财务报表中的“$1,234.56”读成了“123456”?或者在处理医疗记录时,将“0.5mg”误读为“5mg”?对于依赖数据准确性的运营和采购团队来说,这些问题不仅影响工作效率,更可能导致财务损失、法律风险甚至造成医疗事故。
蚂蚁开源大模型的低成本训练细节,疑似曝光!
强化学习提升了 LLM 各方面的能力,而强化学习本身也在进化。
过去十年,自然语言处理领域经历了从统计语言模型到大型语言模型(LLMs)的飞速发展。
这两年,AI 领域最激动人心的进展莫过于大型语言模型(LLM)的崛起,LLM 展现了惊人的理解和生成能力。
现有RAG工具的碎片化和复杂性常常让开发者头疼不已。昨天我的Agent群里朋友们就Rerank问题展开激烈讨论,我想起之前看到的一篇论文,这项研究介绍了一个完美的开源python工具包Rankify,它将检索、重排序和RAG三大功能整合在一个统一框架中,大幅简化了开发流程。
火,Agent可太火了!关于Agent的进展俯拾皆是,根本看不过来……
轨迹可控的视频生成来了,支持三种不同级别的轨迹控制条件——分别为掩码、边界框和稀疏框。研究人员提出了MagicMotion,一种创新的图像到视频生成框架,共同第一作者为复旦大学研究生李全昊、邢桢,通讯作者为复旦大学吴祖煊副教授。
视频作为包含大量时空信息和语义的媒介,对于 AI 理解、模拟现实世界至关重要。视频生成作为生成式 AI 的一个重要方向,其性能目前主要通过增大基础模型的参数量和预训练数据实现提升,更大的模型是更好表现的基础,但同时也意味着更苛刻的计算资源需求。