AI资讯新闻榜单内容搜索-语言模型

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 语言模型
Test Time Scaling Law远未达到上限! o4-mini仅15.8%通过率,华为诺亚提出代码HLCE终极基准

Test Time Scaling Law远未达到上限! o4-mini仅15.8%通过率,华为诺亚提出代码HLCE终极基准

Test Time Scaling Law远未达到上限! o4-mini仅15.8%通过率,华为诺亚提出代码HLCE终极基准

大语言模型(LLM)在标准编程基准测试(如 HumanEval,Livecodebench)上已经接近 “毕业”,但这是否意味着它们已经掌握了人类顶尖水平的复杂推理和编程能力?

来自主题: AI技术研报
5959 点击    2025-07-07 10:39
原来Scaling Law还能被优化?Meta这招省token又提效

原来Scaling Law还能被优化?Meta这招省token又提效

原来Scaling Law还能被优化?Meta这招省token又提效

2017 年,一篇《Attention Is All You Need》论文成为 AI 发展的一个重要分水岭,其中提出的 Transformer 依然是现今主流语言模型的基础范式。尤其是在基于 Transformer 的语言模型的 Scaling Law 得到实验验证后,AI 领域的发展更是进入了快车道。

来自主题: AI技术研报
5824 点击    2025-07-06 14:56
LeCun团队揭示LLM语义压缩本质:极致统计压缩牺牲细节

LeCun团队揭示LLM语义压缩本质:极致统计压缩牺牲细节

LeCun团队揭示LLM语义压缩本质:极致统计压缩牺牲细节

那问题来了:大型语言模型(LLM)虽然语言能力惊人,但它们在语义压缩方面能做出和人类一样的权衡吗?为探讨这一问题,图灵奖得主LeCun团队,提出了一种全新的信息论框架。该框架通过对比人类与LLM在语义压缩中的策略,揭示了两者在压缩效率与语义保真之间的根本差异:LLM偏向极致的统计压缩,而人类更重细节与语境。

来自主题: AI技术研报
5107 点击    2025-07-06 11:17
无损加速视觉语言模型推理!轻松剪掉视觉冗余Token|腾讯AI Lab

无损加速视觉语言模型推理!轻松剪掉视觉冗余Token|腾讯AI Lab

无损加速视觉语言模型推理!轻松剪掉视觉冗余Token|腾讯AI Lab

多图像、长视频、细粒度感知正在让大型视觉语言模型(LVLM)变得越来越聪明,但也越来越“吃不消”:视觉Token数量的激增所带来的推理成本暴涨,正逐渐成为多模态智能扩展的最大算力瓶颈。

来自主题: AI技术研报
5999 点击    2025-07-05 19:00
首个GUI多模态大模型智能体可信评测框架+基准:MLA-Trust

首个GUI多模态大模型智能体可信评测框架+基准:MLA-Trust

首个GUI多模态大模型智能体可信评测框架+基准:MLA-Trust

MLA-Trust 是首个针对图形用户界面(GUI)环境下多模态大模型智能体(MLAs)的可信度评测框架。该研究构建了涵盖真实性、可控性、安全性与隐私性四个核心维度的评估体系,精心设计了 34 项高风险交互任务,横跨网页端与移动端双重测试平台,对 13 个当前最先进的商用及开源多模态大语言模型智能体进行深度评估,系统性揭示了 MLAs 从静态推理向动态交互转换过程中所产生的可信度风险。

来自主题: AI技术研报
6470 点击    2025-07-05 13:02
人机协同筛出2600万条数据,七项基准全部SOTA,昆仑万维开源奖励模型再迎新突破

人机协同筛出2600万条数据,七项基准全部SOTA,昆仑万维开源奖励模型再迎新突破

人机协同筛出2600万条数据,七项基准全部SOTA,昆仑万维开源奖励模型再迎新突破

大语言模型(LLM)以生成能力强而著称,但如何能让它「听话」,是一门很深的学问。 基于人类反馈的强化学习(RLHF)就是用来解决这个问题的,其中的奖励模型 (Reward Model, RM)扮演着重要的裁判作用,它专门负责给 LLM 生成的内容打分,告诉模型什么是好,什么是不好,可以保证大模型的「三观」正确。

来自主题: AI技术研报
6063 点击    2025-07-05 12:10
超CLIP准确率11%!伯克利港大阐明「LLM文本-视觉」对齐深层机制

超CLIP准确率11%!伯克利港大阐明「LLM文本-视觉」对齐深层机制

超CLIP准确率11%!伯克利港大阐明「LLM文本-视觉」对齐深层机制

多模态对齐模型借助对比学习在检索与生成任务中大放异彩。最新趋势是用冻结的大语言模型替换自训文本编码器,从而在长文本与大数据场景中降低算力成本。LIFT首次系统性地剖析了此范式的优势来源、数据适配性、以及关键设计选择,在组合语义理解与长文本任务上观察到大幅提升。

来自主题: AI技术研报
5864 点击    2025-07-03 11:00
AI Agent、传统聊天机器人有何区别?如何评测?这篇30页综述讲明白了

AI Agent、传统聊天机器人有何区别?如何评测?这篇30页综述讲明白了

AI Agent、传统聊天机器人有何区别?如何评测?这篇30页综述讲明白了

自从 Transformer 问世,NLP 领域发生了颠覆性变化。大语言模型极大提升了文本理解与生成能力,成为现代 AI 系统的基础。而今,AI 正不断向前,具备自主决策和复杂交互能力的新一代 AI Agent 也正加速崛起。

来自主题: AI技术研报
4671 点击    2025-07-03 10:31
周志华团队新作:LLM中存在奖励模型,首次理论证明RL对LLM有效性

周志华团队新作:LLM中存在奖励模型,首次理论证明RL对LLM有效性

周志华团队新作:LLM中存在奖励模型,首次理论证明RL对LLM有效性

将大语言模型(LLMs)与复杂的人类价值观对齐,仍然是 AI 面临的一个核心挑战。当前主要的方法是基于人类反馈的强化学习(RLHF)。该流程依赖于一个通过人类偏好训练的奖励模型来对模型输出进行评分,最终对齐后的 LLM 的质量在根本上取决于该奖励模型的质量。

来自主题: AI技术研报
7347 点击    2025-07-03 10:00