微软提出变色龙框架,让模型自带工具箱开挂,数学推理任务准确率98%|NeurIPS 2023
微软提出变色龙框架,让模型自带工具箱开挂,数学推理任务准确率98%|NeurIPS 2023教大模型调用工具,已经是AI圈关注度最高的话题之一了。这不,又有一项研究登上最新NeurIPS 2023——它是一个叫做Chameleon(变色龙)的框架,号称能将大语言模型直接变成魔法师的工具箱,来自微软与加州大学洛杉矶分校(UCLA)。
教大模型调用工具,已经是AI圈关注度最高的话题之一了。这不,又有一项研究登上最新NeurIPS 2023——它是一个叫做Chameleon(变色龙)的框架,号称能将大语言模型直接变成魔法师的工具箱,来自微软与加州大学洛杉矶分校(UCLA)。
上个月,微软 CEO 纳德拉在 Ignite 大会上宣布自研小尺寸模型 Phi-2 将完全开源,在常识推理、语言理解和逻辑推理方面的性能显著改进。
都快到年底了,大模型领域还在卷,今天,Microsoft发布了参数量为2.7B的Phi-2——不仅13B参数以内没有对手,甚至还能和Llama 70B掰手腕!
随着大型语言模型(LLM)的发展,从业者面临更多挑战。如何避免 LLM 产生有害回复?如何快速删除训练数据中的版权保护内容?如何减少 LLM 幻觉(hallucinations,即错误事实)? 如何在数据政策更改后快速迭代 LLM?这些问题在人工智能法律和道德的合规要求日益成熟的大趋势下,对于 LLM 的安全可信部署至关重要。
喂给大模型语料——最初是维基百科和Reddit,后来扩展到音频、视觉图像甚至雷达和热图像——后者广义上说是换了种表达方式的语言。也因此有生成式AI的创业者认为,一个极度聪明的大语言模型就是那个通往AGI最终答案,多模态的研究道路只是目前对前者的底气不足。
上周末,Mistral甩出的开源MoE大模型,震惊了整个开源社区。MoE究竟是什么?它又是如何提升了大语言模型的性能?
大语言模型需要消耗巨量的GPU内存。有可能一个单卡GPU跑推理吗?可以的话,最低多少显存?70B大语言模型仅参数量就有130GB,仅仅把模型加载到GPU显卡里边就需要2台顶配100GB内存的A100。
哈工深发布全新多模态大语言模型九天(JiuTian-LION),融合细粒度空间感知和高层语义视觉知识,在13个评测任务上实现了sota性能。
大语言模型「拍马屁」的问题到底要怎么解决?最近,LeCun转发了Meta发布的一篇论文,研究人员提出了新的方法,有效提升了LLM回答问题的事实性和客观性。我们一起来看一下吧。
来自中国科学院深圳先进技术研究院、中国科学院大学和 VIVO AI Lab 的研究者联合提出了一个无需训练的文本生成视频新框架 ——GPT4Motion。GPT4Motion 结合了 GPT 等大型语言模型的规划能力、Blender 软件提供的物理模拟能力,以及扩散模型的文生图能力,旨在大幅提升视频合成的质量。