Lumina-DiMOO:多模态扩散语言模型重塑图像生成与理解
Lumina-DiMOO:多模态扩散语言模型重塑图像生成与理解上海人工智能实验室推出了一款革新的多模态生成理解一体化的扩散语言模型 ——Lumina-DiMOO。基于离散扩散建模(Discrete Diffusion Modeling),Lumina-DiMOO 打破了多模态任务之间的壁垒,在同一离散扩散框架下,完成从 文本→图像、图像→图像、图像→文本的全栈能力闭环。
上海人工智能实验室推出了一款革新的多模态生成理解一体化的扩散语言模型 ——Lumina-DiMOO。基于离散扩散建模(Discrete Diffusion Modeling),Lumina-DiMOO 打破了多模态任务之间的壁垒,在同一离散扩散框架下,完成从 文本→图像、图像→图像、图像→文本的全栈能力闭环。
近年来,Stable Diffusion、CogVideoX 等视频生成模型在自然场景中表现惊艳,但面对科学现象 —— 如流体模拟或气象过程 —— 却常常 “乱画”:如下视频所示,生成的流体很容易产生违背物理直觉的现象,比如气旋逆向旋转或整体平移等等。
一篇入围顶会NeurIPS’25 Oral的论文,狠狠反击了一把DiT(Diffusion Transformer)。这篇来自字节跳动商业化技术团队的论文,则是提出了一个名叫InfinityStar的方法,一举兼得了视频生成的质量和效率,为视频生成方法探索更多可能的路径。
近期,RAE(Diffusion Transformers with Representation Autoencoders)提出以「 冻结的预训练视觉表征」直接作为潜空间,以显著提升扩散模型的生成性能。
近日,诺贝尔奖得主、美国华盛顿大学教授大卫·贝克(David Baker)和团队再次将 AI 成果送上 Nature,他们开发出一种基于 AI 的蛋白质结构生成模型 RFdiffusion,能在指定病毒表面特定表位的情况下,辅助人类从头设计出能够与之结合的抗体结构。
扩散大语言模型得到了突飞猛进的发展,早在 25 年 2 月 Inception Labs 推出 Mercury—— 第一个商业级扩散大型语言模型,同期人民大学发布第一个开源 8B 扩散大语言模型 LLaDA,5 月份 Gemini Diffusion 也接踵而至。
近日,上海人工智能实验室针对该难题提出全新范式 SDAR (Synergistic Diffusion-AutoRegression)。该方法通过「训练-推理解耦」的巧妙设计,无缝融合了 AR 模型的高性能与扩散模型的并行推理优势,能以极低成本将任意 AR 模型「改造」为并行解码模型。
近年来,基于扩散模型的图像生成技术发展迅猛,催生了Stable Diffusion、Midjourney等一系列强大的文生图应用。然而,当前主流的训练范式普遍依赖一个核心组件——变分自编码器(VAE),这也带来了长久以来困扰研究者们的几个问题:
近日,来自普渡大学、德克萨斯大学、新加坡国立大学、摩根士丹利机器学习研究、小红书 hi-lab 的研究者联合提出了一种对离散扩散大语言模型的后训练方法 —— Discrete Diffusion Divergence Instruct (DiDi-Instruct)。经过 DiDi-Instruct 后训练的扩散大语言模型可以以 60 倍的加速超越传统的 GPT 模型和扩散大语言模型。
长期以来,扩散模型的训练通常依赖由变分自编码器(VAE)构建的低维潜空间表示。然而,VAE 的潜空间表征能力有限,难以有效支撑感知理解等核心视觉任务,同时「VAE + Diffusion」的范式在训练