小众架构赢麻了!通过编辑功能 LLaDA2.1 让100B扩散模型飙出892 tokens/秒的速度!
小众架构赢麻了!通过编辑功能 LLaDA2.1 让100B扩散模型飙出892 tokens/秒的速度!谁能想到啊,在自回归模型(Autoregressive,AR)当道的现在,一个非主流架构的模型突然杀了回马枪——被长期视为学术玩具的扩散语言模型,直接在复杂编程任务中飙出了892 tokens/秒的速度!
谁能想到啊,在自回归模型(Autoregressive,AR)当道的现在,一个非主流架构的模型突然杀了回马枪——被长期视为学术玩具的扩散语言模型,直接在复杂编程任务中飙出了892 tokens/秒的速度!
扩散语言模型(Diffusion Language Models, DLLMs)因其多种潜在的特性而备受关注,如能加速的非自回归并行生成特性,能直接起草编辑的特性,能数据增强的特性。然而,其模型能力往往落后于同等规模的强力自回归(AR)模型。
扩散语言模型(Diffusion LLMs, dLLMs)因支持「任意顺序生成」和并行解码而备受瞩目。直觉上,打破传统自回归(AR)「从左到右」的束缚,理应赋予模型更广阔的解空间,从而在数学、代码等复杂任务上解锁更强的推理潜力。
近日,腾讯微信 AI 团队提出了 WeDLM(WeChat Diffusion Language Model),这是首个在工业级推理引擎(vLLM)优化条件下,推理速度超越同等 AR 模型的扩散语言模型。
,时长 00:20 视频 1:单样例推理速度对比:SGLang 部署的 Qwen3-8B (NVIDIA) vs. LoPA-Dist 部署 (NVIDIA & Ascend)(注:NVIDIA 平台
扩散语言模型(Diffusion Language Models)以其独特的 “全局规划” 与并行解码能力广为人知,成为 LLM 领域的全新范式之一。然而在 Any-order 解码模式下,其通常面临
前段时间,我们在 HuggingFace 页面发现了两个新模型:LLaDA2.0-mini 和 LLaDA2.0-flash。它们来自蚂蚁集团与人大、浙大、西湖大学组成的联合团队,都采用了 MoE 架构。前者总参数量为 16B,后者总参数量则高达 100B—— 在「扩散语言模型」这个领域,这是从未见过的规模。
基于扩散的大语言模型 (dLLM) 凭借全局解码和双向注意力机制解锁了原生的并行解码和受控生成的潜力,最近吸引了广泛的关注。例如 Fast-dLLM 的现有推理框架通过分块半自回归解码进一步实现了 dLLM 对 KV cache 的支持,挑战了传统自回归 LLMs 的统治地位。
上海人工智能实验室推出了一款革新的多模态生成理解一体化的扩散语言模型 ——Lumina-DiMOO。基于离散扩散建模(Discrete Diffusion Modeling),Lumina-DiMOO 打破了多模态任务之间的壁垒,在同一离散扩散框架下,完成从 文本→图像、图像→图像、图像→文本的全栈能力闭环。
扩散大语言模型得到了突飞猛进的发展,早在 25 年 2 月 Inception Labs 推出 Mercury—— 第一个商业级扩散大型语言模型,同期人民大学发布第一个开源 8B 扩散大语言模型 LLaDA,5 月份 Gemini Diffusion 也接踵而至。