
多模态CelHive在AI agent时代打造一个超级智能体平台
多模态CelHive在AI agent时代打造一个超级智能体平台大模型与多模态之间的关系,可以理解为大模型就像是人脑中的‘前额叶’,主要负责高级认知功能,但只有前额叶的大脑是无法处理复杂任务的,这就需要多个不同模型之间互相协调,从单纯的“前额叶”走向“完整的大脑”,从而处理更加复杂的现实任务。
大模型与多模态之间的关系,可以理解为大模型就像是人脑中的‘前额叶’,主要负责高级认知功能,但只有前额叶的大脑是无法处理复杂任务的,这就需要多个不同模型之间互相协调,从单纯的“前额叶”走向“完整的大脑”,从而处理更加复杂的现实任务。
当我看到 Cursor、Claude Code、Lovable 这些 AI 编程工具的出现,以及它们正在以惊人的速度降低软件开发成本时,我意识到我们正站在一个历史转折点上。这不仅仅是开发效率的提升,而是整个软件行业商业逻辑的根本性重构。
近年来,扩散大语言模型(Diffusion Large Language Models, dLLMs)正迅速崭露头角,成为文本生成领域的一股新势力。与传统自回归(Autoregressive, AR)模型从左到右逐字生成不同,dLLM 依托迭代去噪的生成机制,不仅能够一次性生成多个 token,还能在对话、推理、创作等任务中展现出独特的优势。
「兄弟们,DiT 是错的!」 最近一篇帖子在 X 上引发了很大的讨论,有博主表示 DiT 存在架构上的缺陷,并附上一张论文截图。
虽然大模型的优越表现令人瞩目,但动辄高昂的使用成本也让不少用户望而却步。 为平衡性能与成本,上海人工智能实验室科研团队基于前期技术积累,开源推出了Avengers-Pro多模型调度路由方案。
DeepSeek V3.1新版正式上线,上下文128k,编程实力碾压Claude 4 Opus,成本低至1美元。在昨晚,DeepSeek官方悄然上线了全新的V3.1版本,上下文长度拓展到128k。本次开源的V3.1模型拥有685B参数,支持多种精度格式,从BF16到FP8。
真正的业务宝藏往往就埋藏在那些看似杂乱无章的文本数据之中,即非结构化文本,但问题是,如何高效、可靠地把这些宝藏精准地挖出来,一直是个令人头疼的难题,今天我们就来聊聊最近GitHub12.3k star爆火的Google 开源项目LangExtract,它为这个问题提供了一个相当漂亮的答案。
作为大家的测评博主,我最近发现一个巨有意思的现象: 现在市面上大部分评估 Agent 的基准测试,倾向于考核“单项技能”,而非“综合任务”。比如,你让 AI 点份外卖,它能完成;但如果要求它策划一场涵盖预算、选址、菜单、宾客邀请与流程安排的晚宴,它很可能就原地就 G 了。
奥特曼称GPT-5「比人聪明」,但OpenAI首席运营官Lightcap澄清:这不是AGI。这只是能力过剩的冰山一角——我们仍有十年产品可建,模型越智能,融合越要精妙。GPT-5标志着从纯智商到反思能力的全面跃进。
大模型的记忆墙,被MIT撬开了一道口子。 MIT等机构最新提出了一种新架构,让推理大模型的思考长度突破物理限制,理论上可以无限延伸。 这个新架构名叫Thread Inference Model,简称TIM。