
黄仁勋提到的机器人世界,还需要AI数据来“调教” | CVPR 2024
黄仁勋提到的机器人世界,还需要AI数据来“调教” | CVPR 2024本周,CVPR 2024正在美国西雅图拉开序幕。今年CVPR论文投稿数再次创下新纪录,可想而知本届会议的火热。
本周,CVPR 2024正在美国西雅图拉开序幕。今年CVPR论文投稿数再次创下新纪录,可想而知本届会议的火热。
CVPR正在进行中,中国科研力量再次成为场内外焦点之一。
在CV、ML等领域经常用到的神经场网格模型,如今有了理论框架描述其训练动力学和泛化性能。
360 度场景生成是计算机视觉的重要任务,主流方法主要可分为两类,一类利用图像扩散模型分别生成 360 度场景的多个视角。由于图像扩散模型缺乏场景全局结构的先验知识,这类方法无法有效生成多样的 360 度视角,导致场景内主要的目标被多次重复生成,如图 1 的床和雕塑。
近年来,具身智能(如自动驾驶和机器人等自主智能体)取得了迅猛发展。
图像与视频合成、3D 视觉、人体行为识别、视觉与语言推理等研究方向论文最多,属于最热门的方向,体现当前学界对视觉生成、三维感知、人机交互等方向的高度重视。另外,多模态学习、以人为本的设计和自适应机器人可能构成人形机器人的未来。
天津大学与南京大学联合团队在CVPR 2024上发表了LPSNet项目,提出了一种端到端的无透镜成像下的3D人体姿态和形状估计框架,通过多尺度无透镜特征解码器和双头辅助监督机制,直接从编码后的无透镜成像数据中提取特征并提高姿态估计的准确度。
循环调用CLIP,无需额外训练就有效分割无数概念。 包括电影动漫人物,地标,品牌,和普通类别在内的任意短语。
多模态,已经成为大模型最重要的发展方向之一。
通过视觉信息识别、理解人群的行为是视频监测、交互机器人、自动驾驶等领域的关键技术之一,但获取大规模的人群行为标注数据成为了相关研究的发展瓶颈。如今,合成数据集正成为一种新兴的,用于替代现实世界数据的方法,但已有研究中的合成数据集主要聚焦于人体姿态与形状的估计。它们往往只提供单个人物的合成动画视频,而这并不适用于人群的视频识别任务。