捣鼓了一年的LLM应用,我们学到了啥——Part I
捣鼓了一年的LLM应用,我们学到了啥——Part I之前分享了我们在运营LLM应用时磨练出来的战术(tactics)【指之前的Part I 和Part II两篇文章】。战术是具体的:是为实现目标而采取的具体行动。我们还分享了对运营(Operations)的看法:为了执行战术,达到目标,而制定的更高层次的流程。
之前分享了我们在运营LLM应用时磨练出来的战术(tactics)【指之前的Part I 和Part II两篇文章】。战术是具体的:是为实现目标而采取的具体行动。我们还分享了对运营(Operations)的看法:为了执行战术,达到目标,而制定的更高层次的流程。
近些年,语言建模领域进展非凡。Llama 或 ChatGPT 等许多大型语言模型(LLM)有能力解决多种不同的任务,它们也正在成为越来越常用的工具。
大型语言模型(LLM)的一个主要特点是「大」,也因此其训练和部署成本都相当高,如何在保证 LLM 准确度的同时让其变小就成了非常重要且有价值的研究课题。
在基准测试上频频屠榜的大模型们,竟然被一道简单的逻辑推理题打得全军覆没?最近,研究机构LAION的几位作者共同发表了一篇文章,以「爱丽丝梦游仙境」为启发涉及了一系列简单的推理问题,揭示了LLM基准测试的盲区。
最近,德国研究科学家发表的PANS论文揭示了一个令人担忧的现象:LLM已经涌现出「欺骗能力」,它们可以理解并诱导欺骗策。而且,相比前几年的LLM,更先进的GPT-4、ChatGPT等模型在欺骗任务中的表现显著提升。
从大规模网络爬取、精细过滤到去重技术,通过FineWeb的技术报告探索如何打造高质量数据集,为大型语言模型(LLM)预训练提供更优质的性能。
让语言模型「轻装上阵」。
极限量化,把每个参数占用空间压缩到1.1bit!
DeepMind发表了一篇名为「To Believe or Not to Believe Your LLM」的新论文,探讨了LLM的不确定性量化问题,通过「迭代提示」成功将LLM的认知不确定性和偶然不确定性解耦。研究还将新推导出的幻觉检测算法应用于Gemini,结果表明,与基线方法相比,该方法能有效检测幻觉。
大模型应用开卷,连一向保守的苹果,都已释放出发展端侧大模型的信号。