LLM最全「怪癖」首曝光!马里兰OpenAI等30+学者祭出75页提示报告
LLM最全「怪癖」首曝光!马里兰OpenAI等30+学者祭出75页提示报告大语言模型提示中,竟有不少「怪癖」:重复某些内容,准确性就大大提高;人名变匿名,准确性就大大下降。最近,马里兰OpenAI等机构的30多位研究者,首次对LLM的提示技术进行了大规模系统研究,并发布75页详尽报告。
大语言模型提示中,竟有不少「怪癖」:重复某些内容,准确性就大大提高;人名变匿名,准确性就大大下降。最近,马里兰OpenAI等机构的30多位研究者,首次对LLM的提示技术进行了大规模系统研究,并发布75页详尽报告。
DeepMind最近发表的一篇论文提出用混合架构的方法解决Transformer模型的推理缺陷。将Transformer的NLU技能与基于GNN的神经算法推理器(NAR)的强大算法推理能力相结合,可以实现更加泛化、稳健、准确的LLM推理。
大语言模型(LLM)的迅速发展,引发了关于如何评估其公平性和可靠性的热议。
当前主流的视觉语言模型(VLM)主要基于大语言模型(LLM)进一步微调。因此需要通过各种方式将图像映射到 LLM 的嵌入空间,然后使用自回归方式根据图像 token 预测答案。
大模型是世界模型吗?UA微软等机构最新研究发现,GPT-4在复杂环境的模拟中,准确率甚至不及60%。对此,LeCun激动地表示,世界模型永远都不可能是LLM。
训练数据的数量和质量,对LLM性能的重要性已经是不言自明的事实。然而,Epoch AI近期的一篇论文却给正在疯狂扩展的AI模型们泼了冷水,他们预测,互联网上可用的人类文本数据将在四年后,即2028年耗尽。
才用了112台A800,就能训出性能达GPT-4 90%的万亿参数大模型?智源的全球首个低碳单体稠密万亿参数大模型Tele-FLM,有望解决全球算力紧缺难题!此外,全新思路的原生多模态「世界模型」Emu 3等都浅亮相了一把。2024的智源大会,依然是星光熠熠,学术巨佬含量超标。
刚刚,英伟达全新发布的开源模型Nemotron-4 340B,有可能彻底改变训练LLM的方式!从此,或许各行各业都不再需要昂贵的真实世界数据集了。而且,Nemotron-4 340B直接超越了Mixtral 8x22B、Claude sonnet、Llama3 70B、Qwen 2,甚至可以和GPT-4掰手腕!
性能超越 Llama-3,主要用于合成数据。
近年来,大语言模型(Large Language Models, LLMs)受到学术界和工业界的广泛关注,得益于其在各种语言生成任务上的出色表现,大语言模型推动了各种人工智能应用(例如ChatGPT、Copilot等)的发展。然而,大语言模型的落地应用受到其较大的推理开销的限制,对部署资源、用户体验、经济成本都带来了巨大挑战。