
5个知识图谱KG和RAG系统的误解 — 构建和使用RAG原生图谱
5个知识图谱KG和RAG系统的误解 — 构建和使用RAG原生图谱在本文中,我们想要解决GraphRAG系统中的一些常见误解。我们特别关注理解知识图谱构建技术和我们称之为“RAG-Native Graphs”所带来的细微差别。
在本文中,我们想要解决GraphRAG系统中的一些常见误解。我们特别关注理解知识图谱构建技术和我们称之为“RAG-Native Graphs”所带来的细微差别。
之前我们聊过 RAG 里文档分块 (Chunking) 的挑战,也介绍了 迟分 (Late Chunking) 的概念,它可以在向量化的时候减少上下文信息的丢失。今天,我们来聊聊另一个难题:如何找到最佳的分块断点。
MVDrag3D 是一种创新的3D编辑框架,它通过结合多视图生成和重建先验来实现灵活且富有创造性的拖拽编辑。
斯坦福大学奥马尔(Omar)的DSPy研究团队最近更新了他们的项目文档,发了很多不错的案例,以及很多国际知名企业的DSPy用例,这些可能对您的项目有启发。
RAG,AI,模型训练,人工智能
这两天Github上有一个项目火了。可用于生产环境GraphRAG的开源UI项目kotaemon,更新不到两天后已经有6.6KStar,昨日新增1.3KStar已位居Github Trending榜首。周末抽空部署了一下,还挺简单,推荐给大家。
日前,MLCommons协会发布最新MLPerf™ Storage v1.0 AI存储基准测试成绩。浪潮信息分布式存储平台AS13000G7表现出众,在3D-UNet和CosmoFlow两个模型共计8项测试中,斩获5项性能全球第一。
RAG通过纳入外部文档可以辅助LLM进行更复杂的推理,降低问题求解所需的推理深度,但由于文档噪声的存在,其提升效果可能会受限。中国人民大学的研究表明,尽管RAG可以提升LLM的推理能力,但这种提升作用并不是无限的,并且会受到文档中噪声信息的影响。通过DPrompt tuning的方法,可以在一定程度上提升LLM在面对噪声时的性能。
RAGFlow自2024年4月1日正式开源,时至今日,不到7个月时间已经站在了Github 2万星标的台阶之上。
简单高效的大模型检索增强系统LightRAG,香港大学黄超团队最新研究成果。 开源两周时间在GitHub上获得将近5k标星,并登上趋势榜。