大型语言模型(LLM)的成功离不开「基于人类反馈的强化学习(RLHF)」。RLHF 可以大致可以分为两个阶段,首先,给定一对偏好和不偏好的行为,训练一个奖励模型,通过分类目标为前者分配更高的分数。
大型语言模型(LLM)的成功离不开「基于人类反馈的强化学习(RLHF)」。RLHF 可以大致可以分为两个阶段,首先,给定一对偏好和不偏好的行为,训练一个奖励模型,通过分类目标为前者分配更高的分数。
有的大模型对齐方法包括基于示例的监督微调(SFT)和基于分数反馈的强化学习(RLHF)。然而,分数只能反应当前回复的好坏程度,并不能明确指出模型的不足之处。相较之下,我们人类通常是从语言反馈中学习并调整自己的行为模式。
复旦团队进一步挖掘 RLHF 的潜力,重点关注奖励模型(Reward Model)在面对实际应用挑战时的表现和优化途径。
OpenAI认为,未来十年来将诞生超过人类的超级AI系统。但是,这会出现一个问题,即基于人类反馈的强化学习技术将终结。
多模态技术是 AI 多样化场景应用的重要基础,多模态大模型(MLLM)展现出了优秀的多模态信息理解和推理能力,正成为人工智能研究的前沿热点。上周,谷歌发布 AI 大模型 Gemini,据称其性能在多模态任务上已全面超越 OpenAI 的 GPT-4V,再次引发行业的广泛关注和热议。
随着大型语言模型(LLM)的发展,从业者面临更多挑战。如何避免 LLM 产生有害回复?如何快速删除训练数据中的版权保护内容?如何减少 LLM 幻觉(hallucinations,即错误事实)? 如何在数据政策更改后快速迭代 LLM?这些问题在人工智能法律和道德的合规要求日益成熟的大趋势下,对于 LLM 的安全可信部署至关重要。
RLHF今年虽然爆火,但实打实用到的模型并不多,现在还出现了替代方案,有望从开源界“出圈”;大模型透明度越来越低,透明度最高的是Llama 2,但得分也仅有54;
谷歌团队的最新研究提出了,用大模型替代人类,进行偏好标注,也就是AI反馈强化学习(RLAIF)。