MIT成果登Nature正刊:90天,「AI科学家」完成3500次电化学测试
MIT成果登Nature正刊:90天,「AI科学家」完成3500次电化学测试美国麻省理工学院李巨团队在国际顶尖学术期刊Nature上发表了一篇研究论文,展示了一种多模态机器人平台CRESt(Copilot for Real-world Experimental Scientists),通过将多模态模型(融合文本知识、化学成分以及微观结构信息)驱动的材料设计与高通量自动化实验相结合,大幅提升催化剂的研发速度和质量。
美国麻省理工学院李巨团队在国际顶尖学术期刊Nature上发表了一篇研究论文,展示了一种多模态机器人平台CRESt(Copilot for Real-world Experimental Scientists),通过将多模态模型(融合文本知识、化学成分以及微观结构信息)驱动的材料设计与高通量自动化实验相结合,大幅提升催化剂的研发速度和质量。
多模态大模型在根据静态截图生成网页代码(Image-to-Code)方面已展现出不俗能力,这让许多人对AI自动化前端开发充满期待。
多模态大模型表现越来越惊艳,但人们也时常困于它的“耿直”。
每隔一阵子,总有人宣告“RAG已死”:上下文越来越长、端到端多模态模型越来越强,好像不再需要检索与证据拼装。但真正落地到复杂文档与可溯源场景,你会发现死掉的只是“只切文本的旧RAG”。
2 天前,国内最大的 AI 多模态模型社区之一的 LiblibAI 进行了一次大升级,正式推出了 2.0 版本。对许多创作者而言,这个平台并不陌生,LiblibAI 一直是国内开源绘画与 LoRA 文化的重要发源地,也常被称为中国版的 CivitAI (大家常说的 C 站)。
多模态大模型首次实现像素级推理,指代、分割、推理三大任务一网打尽!
在多模态大模型的后训练浪潮中,强化学习驱动的范式已成为提升模型推理与通用能力的关键方向。
近年来,多模态大语言模型(Multimodal Large Language Models, MLLMs)在图文理解、视觉问答等任务上取得了令人瞩目的进展。然而,当面对需要精细空间感知的任务 —— 比如目标检测、实例分割或指代表达理解时,现有模型却常常「力不从心」。
大家或许都有过这样的体验: 看完一部喜欢的动漫,总会心血来潮地想去 “圣地巡礼”;刷到别人剪辑精美的旅行 vlog,也会忍不住收藏起来,想着哪天亲自走一遍同样的路线。旅行与影像的结合,总是能勾起人们的
模型众多,该如何选择? GPT-5:OpenAI的最新旗舰模型,统一智能系统,GPT-5 集成了多个模型,自动根据任务复杂度选择最适合的模型进行处理,多模态首选。 GPT-5 Thinking:GPT