字节发布通用游戏智能体!5000亿token训练,用鼠标键盘吊打GPT-5!
字节发布通用游戏智能体!5000亿token训练,用鼠标键盘吊打GPT-5!Game-TARS基于统一、可扩展的键盘—鼠标动作空间训练,可在操作系统、网页与模拟环境中进行大规模预训练。依托超5000亿标注量级的多模态训练数据,结合稀疏推理(Sparse-Thinking) 与衰减持续损失(decaying continual loss),大幅提升了智能体的可扩展性和泛化性。
Game-TARS基于统一、可扩展的键盘—鼠标动作空间训练,可在操作系统、网页与模拟环境中进行大规模预训练。依托超5000亿标注量级的多模态训练数据,结合稀疏推理(Sparse-Thinking) 与衰减持续损失(decaying continual loss),大幅提升了智能体的可扩展性和泛化性。
最新最强的开源原生多模态世界模型—— 北京智源人工智能研究院(BAAI)的悟界·Emu3.5来炸场了。 图、文、视频任务一网打尽,不仅能画图改图,还能生成图文教程,视频任务更是增加了物理真实性。
在多模态生成领域,由视频生成音频(Video-to-Audio,V2A)的任务要求模型理解视频语义,还要在时间维度上精准对齐声音与动态。早期的 V2A 方法采用自回归(Auto-Regressive)的方式将视频特征作为前缀来逐个生成音频 token,或者以掩码预测(Mask-Prediction)的方式并行地预测音频 token,逐步生成完整音频。
今天,北京智源人工智能研究院(BAAI)重磅发布了其多模态系列模型的最新力作 —— 悟界・Emu3.5。这不仅仅是一次常规的模型迭代,Emu3.5 被定义为一个 “多模态世界大模型”(Multimodal World Foudation Model)。
多模态图片检索是计算机视觉和多模态机器学习领域很重要的一个任务。现在大家做多模态图片检索一般会用 CLIP/SigLIP 这种视觉语言大模型,因为他们经过了大规模的预训练,所以 zero-shot 的能力比较强。
生数科技前产品副总裁廖谦创业了。在此之前,他还先后担任过字节剪映与火山引擎前AIGC产品负责人。8月底从老东家离职后,公司成立仅半个月,就已经拿下了硅谷美元基金HT Investment与BV百度风投的数百万美元投资。
在文化遗产与人工智能的交叉处,有一类问题既美也难:如何让机器「看懂」古希腊的陶器——不仅能识别它的形状或图案,还能推断年代、产地、工坊甚至艺术归属?有研究人员给出了一条实用且富有启发性的答案:把大型多模态模型(MLLM)放在「诊断—补弱—精细化评估」的闭环中训练,并配套一个结构化的评测基准,从而让模型在高度专业化的文化遗产领域表现得更接近专家级能力。
当强大的多模态大语言模型应用于地球科学研究时,它面临着无法忽视的 「阿克琉斯之踵」
能看懂相机参数,并且生成相应视角图片的多模态模型来了。
近日,在 CNCC2025 大会上,郑波首次公开了淘宝全模态大模型的最新进展,并系统介绍了多模态智能在淘宝 AIGX 技术体系的研究应用。另外,结合 AI 模型技术在淘宝应用中的实践,他认为,「狭义 AGI 很可能在 5-10 年内到来。」