
一款手游有400+个AI角色!腾讯游戏新系统炸场GDC:训练成本大减90%
一款手游有400+个AI角色!腾讯游戏新系统炸场GDC:训练成本大减90%你敢信?一款手游里藏着400+个AI角色,且各自有各自的性格……这就是腾讯在一年一度的“游戏界春晚”GDC上展示的一场技术肌肉秀——《火影忍者》手游相关负责人介绍了大规模强化学习AI训练系统,该方法的训练成本和时间比传统的训练方案减少90%。
你敢信?一款手游里藏着400+个AI角色,且各自有各自的性格……这就是腾讯在一年一度的“游戏界春晚”GDC上展示的一场技术肌肉秀——《火影忍者》手游相关负责人介绍了大规模强化学习AI训练系统,该方法的训练成本和时间比传统的训练方案减少90%。
StepCoder将长序列代码生成任务分解为代码完成子任务课程来缓解强化学习探索难题,对未执行的代码段以细粒度优化;还开源了可用于强化学习训练的APPS+数据集。
在目前的模型训练范式中,偏好数据的的获取与使用已经成为了不可或缺的一环。在训练中,偏好数据通常被用作对齐(alignment)时的训练优化目标,如基于人类或 AI 反馈的强化学习(RLHF/RLAIF)或者直接偏好优化(DPO),而在模型评估中,由于任务的复杂性且通常没有标准答案,则通常直接以人类标注者或高性能大模型(LLM-as-a-Judge)的偏好标注作为评判标准。
尽管收集人类对模型生成内容的相对质量的标签,并通过强化学习从人类反馈(RLHF)来微调无监督大语言模型,使其符合这些偏好的方法极大地推动了对话式人工智能的发展。
分布式强化学习是一个综合的研究子领域,需要深度强化学习算法以及分布式系统设计的互相感知和协同。考虑到 DDRL 的巨大进步,我们梳理形成了 DDRL 技术的展历程、挑战和机遇的系列文章。
大型语言模型(LLM)的成功离不开「基于人类反馈的强化学习(RLHF)」。RLHF 可以大致可以分为两个阶段,首先,给定一对偏好和不偏好的行为,训练一个奖励模型,通过分类目标为前者分配更高的分数。
有的大模型对齐方法包括基于示例的监督微调(SFT)和基于分数反馈的强化学习(RLHF)。然而,分数只能反应当前回复的好坏程度,并不能明确指出模型的不足之处。相较之下,我们人类通常是从语言反馈中学习并调整自己的行为模式。
SPF算法是一种基于状态序列频域预测的表征学习方法,利用状态序列的频域分布来显式提取状态序列数据中的趋势性和规律性信息,从而辅助表征高效地提取到长期未来信息。
OpenAI认为,未来十年来将诞生超过人类的超级AI系统。但是,这会出现一个问题,即基于人类反馈的强化学习技术将终结。
谷歌带着Gemini真的来了,多模态能力震惊全网。下一代模型将融合AlphaGo深度强化学习技术,2024年面世。真正可以叫板GPT-4的模型,当属谷歌Gemini。