AI资讯新闻榜单内容搜索-微调

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 微调
全球最强开源模型一夜易主,1320亿参数推理飙升2倍!

全球最强开源模型一夜易主,1320亿参数推理飙升2倍!

全球最强开源模型一夜易主,1320亿参数推理飙升2倍!

【新智元导读】就在刚刚,全球最强开源大模型王座易主,创业公司Databricks发布的DBRX,超越了Llama 2、Mixtral和Grok-1。MoE又立大功!这个过程只用了2个月,1000万美元,和3100块H100。

来自主题: AI技术研报
7737 点击    2024-03-28 16:09
如何从头开始编写LoRA代码,这有一份教程

如何从头开始编写LoRA代码,这有一份教程

如何从头开始编写LoRA代码,这有一份教程

作者表示:在各种有效的 LLM 微调方法中,LoRA 仍然是他的首选。LoRA(Low-Rank Adaptation)作为一种用于微调 LLM(大语言模型)的流行技术,最初由来自微软的研究人员在论文《 LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS 》中提出。

来自主题: AI技术研报
6738 点击    2024-03-20 16:16
金融研报数据魔改Yi-34B & DeepSeek 67B 谁更强? Deepmoney金融大模型魔改方案分享&在线实测

金融研报数据魔改Yi-34B & DeepSeek 67B 谁更强? Deepmoney金融大模型魔改方案分享&在线实测

金融研报数据魔改Yi-34B & DeepSeek 67B 谁更强? Deepmoney金融大模型魔改方案分享&在线实测

在微调大型模型的过程中,一个常用的策略是“知识蒸馏”,这意味着借助高性能模型,如GPT-4,来优化性能较低的开源模型。这种方法背后隐含的哲学理念与logos中心论相似,把GPT-4等模型视为更接近唯一的逻辑或真理的存在。

来自主题: AI资讯
7221 点击    2024-02-21 16:49
人类偏好优化算法哪家强?跟着高手一文学懂DPO、IPO和KTO

人类偏好优化算法哪家强?跟着高手一文学懂DPO、IPO和KTO

人类偏好优化算法哪家强?跟着高手一文学懂DPO、IPO和KTO

尽管收集人类对模型生成内容的相对质量的标签,并通过强化学习从人类反馈(RLHF)来微调无监督大语言模型,使其符合这些偏好的方法极大地推动了对话式人工智能的发展。

来自主题: AI技术研报
7567 点击    2024-02-18 12:25
RAG还是微调?微软出了一份特定领域大模型应用建设流程指南

RAG还是微调?微软出了一份特定领域大模型应用建设流程指南

RAG还是微调?微软出了一份特定领域大模型应用建设流程指南

检索增强生成(RAG)和微调(Fine-tuning)是提升大语言模型性能的两种常用方法,那么到底哪种方法更好?在建设特定领域的应用时哪种更高效?微软的这篇论文供你选择时进行参考。

来自主题: AI技术研报
4784 点击    2024-02-17 12:09
Github2.5k星,Karpathy转赞,「流程工程」让LLM代码能力瞬间翻倍,直接淘汰提示工程

Github2.5k星,Karpathy转赞,「流程工程」让LLM代码能力瞬间翻倍,直接淘汰提示工程

Github2.5k星,Karpathy转赞,「流程工程」让LLM代码能力瞬间翻倍,直接淘汰提示工程

Karpathy力推代码生成任务增强流程,让GPT-4在CodeContests从19%提升到44%,不用微调不用新数据集训练,让大模型代码能力大幅提升。

来自主题: AI技术研报
8208 点击    2024-02-17 10:55
陈丹琦团队新作:数据量砍95%,大模型性能更强了!Less is More

陈丹琦团队新作:数据量砍95%,大模型性能更强了!Less is More

陈丹琦团队新作:数据量砍95%,大模型性能更强了!Less is More

造大模型的成本,又被打下来了!这次是数据量狂砍95%的那种。陈丹琦团队最新提出大模型降本大法——数据选择算法LESS, 只筛选出与任务最相关5%数据来进行指令微调,效果比用整个数据集还要好。

来自主题: AI技术研报
2889 点击    2024-02-10 13:15
进我的收藏夹吃灰吧:大模型加速超全指南来了

进我的收藏夹吃灰吧:大模型加速超全指南来了

进我的收藏夹吃灰吧:大模型加速超全指南来了

2023 年,大型语言模型(LLM)以其强大的生成、理解、推理等能力而持续受到高度关注。然而,训练和部署 LLM 非常昂贵,需要大量的计算资源和内存,因此研究人员开发了许多用于加速 LLM 预训练、微调和推理的方法。

来自主题: AI技术研报
3766 点击    2024-02-09 14:05
像人类一样在批评中学习成长,1317条评语让LLaMA2胜率飙升30倍

像人类一样在批评中学习成长,1317条评语让LLaMA2胜率飙升30倍

像人类一样在批评中学习成长,1317条评语让LLaMA2胜率飙升30倍

有的大模型对齐方法包括基于示例的监督微调(SFT)和基于分数反馈的强化学习(RLHF)。然而,分数只能反应当前回复的好坏程度,并不能明确指出模型的不足之处。相较之下,我们人类通常是从语言反馈中学习并调整自己的行为模式。

来自主题: AI技术研报
5227 点击    2024-02-03 12:52