
扩散模型如何构建新一代决策智能体?超越自回归,同时生成长序列规划轨迹
扩散模型如何构建新一代决策智能体?超越自回归,同时生成长序列规划轨迹近期的研究表明,采用扩散模型的规划模块能够同时生成长序列的轨迹规划,这更加符合人类的决策模式。此外,扩散模型在策略表征和数据合成方面也能为现有的决策智能算法提供更优的选择。
近期的研究表明,采用扩散模型的规划模块能够同时生成长序列的轨迹规划,这更加符合人类的决策模式。此外,扩散模型在策略表征和数据合成方面也能为现有的决策智能算法提供更优的选择。
针对图像编辑中的扩散模型,中科院联合Adobe和苹果公司的研究人员发布了一篇重磅综述。
最近,文生视频模型 Sora 掀起了新一轮生成式 AI 模型浪潮,模型的多模态能力引起广泛关注。
有人表示:「等待已久的 AI 图像创建功能终于迎来了图层!」
最近,OpenAI 视频生成模型 Sora 的爆火,给基于 Transformer 的扩散模型重新带来了一波热度,比如 Sora 研发负责人之一 William Peebles 与纽约大学助理教授谢赛宁去年提出的 DiT(Diffusion Transformer)。
ControlNet作者最新推出的一项研究受到了一波高度关注——给一句prompt,用Stable Diffusion可以直接生成单个或多个透明图层(PNG)!
本文提出了扩散模型中UNet的long skip connection的scaling操作可以有助于模型稳定训练的分析,目前已被NeurIPS 2023录用。同时,该分析还可以解释扩散模型中常用但未知原理的1/√2 scaling操作能加速训练的现象。
根据 OpenAI 披露的技术报告,Sora 的核心技术点之一是将视觉数据转化为 patch 的统一表征形式,并通过 Transformer 和扩散模型结合,展现了卓越的扩展(scale)特性。
2023 年年底,很多人都预测,未来一年将是视频生成快速发展的一年。但出人意料的是,农历春节刚过,OpenAI 就扔出了一个重磅炸弹 —— 能生成 1 分钟流畅、逼真视频的 Sora。
扩散模型,迎来了一项重大新应用——像Sora生成视频一样,给神经网络生成参数,直接打入了AI的底层!