效果、性能双突破,快手OneSug端到端生成式框架入选AAAI 2026
效果、性能双突破,快手OneSug端到端生成式框架入选AAAI 2026当你在电商平台搜索“苹果”,系统会推荐“水果”还是“手机”?或者直接跳到某个品牌旗舰店?短短一个词,背后承载了完全不同的购买意图。而推荐是否精准,直接影响用户的搜索体验,也影响平台的转化效率。
当你在电商平台搜索“苹果”,系统会推荐“水果”还是“手机”?或者直接跳到某个品牌旗舰店?短短一个词,背后承载了完全不同的购买意图。而推荐是否精准,直接影响用户的搜索体验,也影响平台的转化效率。
来自 Player2 的研究员们提出了 Pixel2Play(P2P)模型,该模型以游戏画面和文本指令作为输入,直接输出对应的键盘与鼠标操作信号。在消费级显卡 RTX 5090 上,P2P 可以实现超过 20Hz 的端到端推理速度,从而能够真正像人类一样和游戏进行实时交互。P2P 作为通用游戏基座模型,在超过 40 款游戏、总计 8300 + 小时的游戏数据上进行了训练,
一个智能驾驶系统,在迈向高阶自动驾驶的过程中,应当具备何种能力?除了基础的感知、预测、规划、决策能力,如何对三维空间进行更深入的理解?如何具备包含法律法规、道德原则、防御性驾驶原则等知识?如何进行基本的视觉 - 语言推理?如何让智能系统具备世界观和价值观?
未来不远(Futuring Robot)正式宣布完成 2 亿元的天使轮融资,目前已经完成家庭通用机器人领域端到端模型落地,真实家庭实测,C 端商业化等重大阶段。
针对端到端全模态大模型(OmniLLMs)在跨模态对齐和细粒度理解上的痛点,浙江大学、西湖大学、蚂蚁集团联合提出 OmniAgent。这是一种基于「音频引导」的主动感知 Agent,通过「思考 - 行动 - 观察 - 反思」闭环,实现了从被动响应到主动探询的范式转变。
VLA 模型正被越来越多地应用于端到端自动驾驶系统中。然而,VLA 模型中冗长的视觉 token 极大地增加了计算成本。但现有的视觉 token 剪枝方法都不是专为自动驾驶设计的,在自动驾驶场景中都具有局限性。
自动驾驶数据荒怎么破?
随着大语言模型(LLM)的商业价值快速提升,其昂贵的训练成本使得模型版权保护(IP Protection)成为业界关注的焦点。然而,现有模型版权验证手段(如模型指纹)往往忽略一个关键威胁:攻击者一旦直接窃取模型权重,即拥有对模型的完全控制权,能够逆向指纹 / 水印,或通过修改输出内容绕过指纹验证。
腾讯混元大模型团队正式发布并开源HunyuanOCR模型!这是一款商业级、开源且轻量(1B参数)的OCR专用视觉语言模型,模型采用原生ViT和轻量LLM结合的架构。目前,该模型在抱抱脸(Hugging Face)趋势榜排名前四,GitHub标星超过700,并在Day 0被vllm官方团队接入。
当元宇宙数字人急需「群舞技能」,音乐驱动生成技术却遭遇瓶颈——舞者碰撞、动作僵硬、长序列崩坏。为解决这些难题,南理工、清华、南大联合研发端到端模型TCDiff++,突破多人生成技术壁垒,实现高质量、长时序的群体舞蹈自动生成。