
多模态大模型存在「内心预警」,无需训练,就能识别越狱攻击
多模态大模型存在「内心预警」,无需训练,就能识别越狱攻击多模态大模型崛起,安全问题紧随其后 近年来,大语言模型(LLMs)的突破式进展,催生了视觉语言大模型(LVLMs)的快速兴起,代表作如 GPT-4V、LLaVA 等。
多模态大模型崛起,安全问题紧随其后 近年来,大语言模型(LLMs)的突破式进展,催生了视觉语言大模型(LVLMs)的快速兴起,代表作如 GPT-4V、LLaVA 等。
现有视频异常检测(Video Anomaly Detection, VAD)方法中,有监督方法依赖大量领域内训练数据,对未见过的异常场景泛化能力薄弱;而无需训练的方法虽借助大语言模型(LLMs)的世界知识实现检测,但存在细粒度视觉时序定位不足、事件理解不连贯、模型参数冗余等问题。
反思技术因其简单性和有效性受到了广泛的研究和应用,具体表现为在大语言模型遇到障碍或困难时,提示其“再想一下”,可以显著提升性能 [1]。然而,2024 年谷歌 DeepMind 的研究人员在一项研究中指出,大模型其实分不清对与错,如果不是仅仅提示模型反思那些它回答错误的问题,这样的提示策略反而可能让模型更倾向于把回答正确的答案改错 [2]。
近年来,多模态大模型(MLLMs)发展迅猛,从看图说话到视频理解,似乎无所不能。
使用过程奖励模型(PRM)强化大语言模型的推理能力已在纯文本任务中取得显著成果,但将过程奖励模型扩展至多模态大语言模型(MLLMs)时,面临两大难题:
当前,大语言模型(LLMs)在编程领域的能力受到广泛关注,相关论断在市场中普遍存在,例如 DeepMind 的 AlphaCode 曾宣称达到人类竞技编程选手的水平
在多模态大语言模型(MLLMs)应用日益多元化的今天,对模型深度理解和分析人类意图的需求愈发迫切。尽管强化学习(RL)在增强大语言模型(LLMs)的推理能力方面已展现出巨大潜力,但将其有效应用于复杂的多模态数据和格式仍面临诸多挑战。
将大语言模型(LLMs)与复杂的人类价值观对齐,仍然是 AI 面临的一个核心挑战。当前主要的方法是基于人类反馈的强化学习(RLHF)。该流程依赖于一个通过人类偏好训练的奖励模型来对模型输出进行评分,最终对齐后的 LLM 的质量在根本上取决于该奖励模型的质量。
尽管大型语言模型(LLMs)和大型视觉 - 语言模型(VLMs)在视频分析和长语境处理方面取得了显著进展,但它们在处理信息密集的数小时长视频时仍显示出局限性。
但在当今的深度 Transformer LLMs 中仍有其局限性,限制了信息在跨层间的高效传递。 彩云科技与北京邮电大学近期联合提出了一个简单有效的残差连接替代:多路动态稠密连接(MUltiway Dynamic Dense (MUDD) connection),大幅度提高了 Transformer 跨层信息传递的效率。