
Transformer作者:DeepSeek才有搞头,OpenAI指望不上了
Transformer作者:DeepSeek才有搞头,OpenAI指望不上了“闭源人工智能在阻碍我们探索真正的科学。”
“闭源人工智能在阻碍我们探索真正的科学。”
香港科技大学谭平教授团队与地平线(Horizon Robotics)团队最新发布了一项 3D 场景表征与大规模重建新方法 SAIL-Recon,通过锚点图建立构建场景全局隐式表征,突破现有 VGGT 基础模型对于大规模视觉定位与 3D 重建的处理能力瓶颈,实现万帧级的场景表征抽取与定位重建,将空间智能「3D 表征与建模」前沿推向一个新的高度。
Transformer 架构对计算和内存的巨大需求使得大模型效率的提升成为一大难题。为应对这一挑战,研究者们投入了大量精力来设计更高效的 LM 架构。
Jet-Nemotron是英伟达最新推出的小模型系列(2B/4B),由全华人团队打造。其核心创新在于提出后神经架构搜索(PostNAS)与新型线性注意力模块JetBlock,实现了从预训练Transformer出发的高效架构优化。
英伟达发布全新架构9B模型,以Mamba-Transformer混合架构实现推理吞吐量最高提升6倍,对标Qwen3-8B并在数学、代码、推理与长上下文任务中表现持平或更优。
当前 GPT 类大语言模型的表征和处理机制,仅在输入和输出接口层面对语言元素保持可解释的语义映射。相比之下,人类大脑直接在分布式的皮层区域中编码语义,如果将其视为一个语言处理系统,它本身就是一个在全局上可解释的「超大模型」。
27M小模型超越o3-mini-high和DeepSeek-R1!推理还不靠思维链。 开发者是那位拒绝了马斯克、还要挑战Transformer的00后清华校友,Sapient Intelligence的创始人王冠。
在大语言模型席卷全球的时代,坚持更接近生命本质的智能是少有人走的路。2025年7月初,一篇来自Numenta与Thousand Brains Project的论文,首次通过一个名为“Monty”的AI系统,实验性地验证了神经科学家杰夫·霍金斯(Jeff Hawkins)提出的“千脑智能理论”。
国内 AI 创企 RockAI 提出的非 Transformer 架构 Yan 2.0 Preview。这个架构极大地降低了模型推理时的计算复杂度,因此可以在算力非常有限的设备上离线运行,比如树莓派。
如何理解大模型推理能力?现在有来自谷歌DeepMind推理负责人Denny Zhou的分享了。 就是那位和清华姚班马腾宇等人证明了只要思维链足够长,Transformer就能解决任何问题的Google Brain推理团队创建者。 Denny Zhou围绕大模型推理过程和方法,在斯坦福大学CS25上讲了一堂“LLM推理”课。