
苹果端侧AI两连发!模型体积减半、首字延迟降85倍,iPhone离线秒用
苹果端侧AI两连发!模型体积减半、首字延迟降85倍,iPhone离线秒用苹果在 Hugging Face上放大招了!这次直接甩出两条多模态主线:FastVLM主打「快」,字幕能做到秒回;MobileCLIP2主打「轻」,在 iPhone 上也能起飞。更妙的是,模型和Demo已经全开放,Safari网页就能体验。大模型,真·跑上手机了。
苹果在 Hugging Face上放大招了!这次直接甩出两条多模态主线:FastVLM主打「快」,字幕能做到秒回;MobileCLIP2主打「轻」,在 iPhone 上也能起飞。更妙的是,模型和Demo已经全开放,Safari网页就能体验。大模型,真·跑上手机了。
在这场以大型语言模型(LLM)为核心的 AI 浪潮中,苹果似乎一直保持着低调,很少出现在技术报道的前沿。尽管如此,时不时地,该公司也能拿出一些非常亮眼的研究成果,比如能在 iPhone 上直接运行的高效视觉语言模型 FastVLM。
浙江大学与哈工大(深圳)联合推出SafeMVDrive,利用扩散模型结合VLM实现批量化多视角真实域的安全关键视频生成。该方法在保持画质与真实感的同时,显著增强了驾驶场景的危险性。生成的场景用于端到端自动驾驶系统的极限压测,可使得模型的碰撞率提升50倍。
4 个月前,OpenAI 的 o3 模型凭借视觉推理能力模块和智能的进化,在 AI 创投圈子引起新一轮的震撼与海啸,解锁了一大批新的「套壳」创业机会。正如我们在《谢谢 OpenAI,谢谢 o3,新的「套壳」创业机会来了 | 附 12 个潜力方向》一文中预测的那样,VLM 确实带来了新的创业机会。
目前的 HOI 检测方法普遍依赖视觉语言模型(VLM),但受限于图像编码器的表现,难以有效捕捉细粒度的区域级交互信息。本文介绍了一种全新的开集人类-物体交互(HOI)检测方法——交互感知提示与概念校准(INP-CC)。
擅长「种草」的小红书正加大技术自研力度,两个月内接连开源三款模型!最新开源的首个多模态大模型dots.vlm1,基于自研视觉编码器构建,实测看穿色盲图,破解数独,解高考数学题,一句话写李白诗风,视觉理解和推理能力都逼近Gemini 2.5 Pro闭源模型。
深度研究智能体(Deep Research Agents)凭借大语言模型(LLM)和视觉-语言模型(VLM)的强大能力,正在重塑知识发现与问题解决的范式。
在人工智能快速发展的今天,我们已逐渐习惯于让 AI 识别图像、理解语言,甚至与之对话。但当我们进入真实三维世界,如何让 AI 具备「看懂场景」、「理解空间」和「推理复杂任务」的能力?这正是 3D 视觉语言模型(3D VLM)所要解决的问题。
我们知道,训练大模型本就极具挑战,而随着模型规模的扩大与应用领域的拓展,难度也在不断增加,所需的数据更是海量。大型语言模型(LLM)主要依赖大量文本数据,视觉语言模型(VLM)则需要同时包含文本与图像的数据,而在机器人领域,视觉 - 语言 - 行动模型(VLA)则要求大量真实世界中机器人执行任务的数据。
多模态大模型崛起,安全问题紧随其后 近年来,大语言模型(LLMs)的突破式进展,催生了视觉语言大模型(LVLMs)的快速兴起,代表作如 GPT-4V、LLaVA 等。