
比Adam更有效,POET从谱不变原理出发,让LLM训练又稳又快
比Adam更有效,POET从谱不变原理出发,让LLM训练又稳又快Zeju Qiu和Tim Z. Xiao是德国马普所博士生,Simon Buchholz和Maximilian Dax担任德国马普所博士后研究员
Zeju Qiu和Tim Z. Xiao是德国马普所博士生,Simon Buchholz和Maximilian Dax担任德国马普所博士后研究员
多模态大模型通常是在大型预训练语言模型(LLM)的基础上扩展而来。尽管原始的 LLM 并不具备视觉理解能力,但经过多模态训练后,这些模型却能在各类视觉相关任务中展现出强大的表现。
反思技术因其简单性和有效性受到了广泛的研究和应用,具体表现为在大语言模型遇到障碍或困难时,提示其“再想一下”,可以显著提升性能 [1]。然而,2024 年谷歌 DeepMind 的研究人员在一项研究中指出,大模型其实分不清对与错,如果不是仅仅提示模型反思那些它回答错误的问题,这样的提示策略反而可能让模型更倾向于把回答正确的答案改错 [2]。
如今,强化学习(Reinforcement Learning,RL)在多个领域已取得显著成果。
首个能跨领域精准预测人类认知的基础模型诞生!
AI也能选择性失忆?Meta联合NYU发布新作,轻松操控缩放Transformer注意头,让大模型「忘掉狗会叫」。记忆可删、偏见可调、安全可破,掀开大模型「可编辑时代」,安全边界何去何从。
现在人工智能领域面临的最大挑战是广义的具身智能,即使你并不特别关心大脑本身……
近年来,视觉 - 语言 - 动作(Vision-Language-Action, VLA)模型因其出色的多模态理解与泛化能力,已成为机器人领域的重要研究方向。尽管相关技术取得了显著进展,但在实际部署中,尤其是在高频率和精细操作等任务中,VLA 模型仍受到推理速度瓶颈的严重制约。
近年来,随着扩散模型(Diffusion Models)和扩散 Transformer(DiT)在视频生成领域的广泛应用,AI 合成视频的质量和连贯性有了飞跃式提升。像 OpenAI Sora、HunyuanVideo、Wan2.1 等大模型,已经能够生成结构清晰、细节丰富且高度连贯的长视频内容,为数字内容创作、虚拟世界和多媒体娱乐带来了巨大变革。
当整个 AI 视觉生成领域都在 Transformer 架构上「卷生卷死」时,一项来自北大、北邮和华为的最新研究却反其道而行之,重新审视了深度学习中最基础、最经典的模块——3x3 卷积。