ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
大模型的威力,远不只是聊天框
2777点击    2024-09-22 10:37


自2022年底ChatGPT发布以来,我们真正看到了大模型的威力,也引发了技术圈种种畅想。有相当一部分观点认为,大模型是一种工业革命级的产物,相信更多的人会和笔者一样,认为大模型是一个操作系统级的产品,会彻底地改变,甚至颠覆现有的,我们使用机器的方式。诚然现在的大模型仍旧是算力杀手,想要让它真达到操作系统的使用规模,可能在硬件上、推理架构上还有一段路要走,但其前景是显而易见的。


所以我们看到,自2023年年初起,各家大模型粉墨登场,卷能力,卷榜单,卷价格,卷参数,让人不禁想问,然后呢?从市场情况上看,大模型应用仍旧处于极早期的阶段,而从产品形态上来看,哪怕是步入了智能体的时代,大模型依然被限制在那个聊天框里面,使用起来仍是相对低效的,对用户来讲仍旧是不那么方便的,自然用户使用的方式也被限制住了。


即便如此,我仍然坚持认为,大模型应当是操作系统,那么,就让我讲讲现状,开开脑洞,畅想一下未来应当是什么样子的。


掉书袋:鸿沟理论


去年,笔者读了一本名为《跨越鸿沟》的书,里面讲了技术采用的生命周期 ,名为鸿沟理论。这一理论将用户分为5类,分别为:创新者、早期采用者、早期大众、后期大众、落后者。



创新者热衷于一切比较新潮的技术,他们非常愿意尝试新鲜的事物,同时也对新技术的缺陷有着最大的包容,甚至愿意同技术开发者共同讨论优化这一技术。早期采用者则比创新者谨慎一些,他们如果相信这一技术未来会成为主流,早晚要拥抱它,才会去使用这个新技术,甚至为了新的特性,哪怕技术不够完善,也愿意用它去取代一些已有的东西,并提出这一技术应当怎么优化,成为一个好用的产品,所以他们也被称作有远见者。


这两批用户虽然很容易被吸引到,但也显然,相对于整个主流市场,他们的占比是很少的。


无论看当前用户的性质,使用的场景,还是单纯看数据,当前的大模型产品一定是处于极早期的,笔者判断,甚至可能没有突破到早期使用者。而主要原因,笔者认为就是当前的产品形态是相对低效的,或者说,当前大模型的产品形态、使用场景,远远达不到“操作系统级产品”的预期。


实际上,很多技术也是死在了前两批用户身上,从早期采用者到早期大众,实则是非常困难的。早期大众也被称作实用主义者,他们的特点是,新的技术形成的产品,得比现有的产品好用,让他们感觉到完成某一个任务变得更加方便,他们才会采用。而很多技术,从创新者和早期采用者那里得到的经验,极有可能是不适用于早期大众的。所以这一阶段,叫做“鸿沟”。


例如,笔者认为,大模型当前较主流的使用形态,即聊天框,是低效的,不符合大部分用户的使用习惯。或许我们应当去进一步探索,大模型怎么能真正渗透到日常的生活中。


顺带一提,正因当前大模型所处于的这一阶段,笔者认为,目前做大规模的投流一定是意义不大的,甚至可能损伤在早期大众用户中的第一印象。


大模型的威力


算法圈的人一直说,自然语言是皇冠,搞定了自然语言,就搞定了人工智能。从原理上讲,自然语言里面的信息量是非常大的,毕竟这是我们为了描述这个世界,创造出来的符号化的表示了。但是又由于我们自身的不确定性,世界的不确定性,则注定自然语言本身也是不确定的,即我们是无法将自然语言转换成一套逻辑表示的。虽然,语言学的专家们提出了一种理想化的模型,起初是很简洁的,当然也就有了大量的反例,为了兼容现实情况,这种逻辑语言模型也变得无比的臃肿,无论形式上还是功能上都难以使用。


但是我们需要借助机器来做的,又大多是确定性的事情,哪怕现在有一些系统(例如人脸识别),没有达到100%的确定性,但是它能够快速识别很多张人脸,比人快,还比人准,记忆还比人强,那么其确定性就是高于人工的,实则还是对确定性的追求。这就意味着,机器需要的语言,或者指令,也应当是确定性的。起初,我们使用指令,或者代码来让机器完成工作,后来,进一步地,我们使用图形化界面,借助鼠标、键盘、触摸屏来让机器完成工作。


移动互联网为什么能够崛起,笔者认为,在绝大多数用户任务上,它有着不亚于PC的性能,但携带方便,随时随地可用,并且,触摸屏上多元的交互在一定程度上也比键盘鼠标更加方便(虽然有时候精确程度不如鼠标),上手成本还低得多,总之,它让用户在生活中变得更加的方便了,所以大部分用户接受了它。


那么我们回过头来看大模型,大模型最大的价值就是,它搞定了自然语言问题啊!它架设起了人与机器交流的桥梁,它能够将自然语言转换成为机器语言,这意味着,我们可能不必去适应机器的交互语言,而是让机器来适应我们的使用方式。当然,可能有的朋友会有疑问,推来推去,不还是说我要和机器直接说话吗?那聊天框不还是一个直观的方式吗?


不是的,自然语言是我们描述这个世界的方式,那么我们很多日常行为所带来的意图,是否都可以用自然语言来表示呢?那么,大模型最为这样一个中枢,是可以大大简化我们和机器的交互的。更进一步想,一个充分学习了我的习惯的大模型,是不是能更好地充当我的个人助理,我可以不需要设置确定的指令,只是我说要干什么,它就能够帮我处理好很多事情,达到我的意图。


可能还有的朋友要问,现在大模型达到了那个能力吗?


其实我们想想,我上面开的这两个脑洞,实际上都是多阶段的,每一阶段其实都是很简单的命令,现在的大模型理解这种简单的命令,笔者是相当有信心的。真正有考验的,其实是记忆能力,以及对已有记忆的注意力,也就是说,我需要的是过往交互中哪一轮的信息,大模型是需要能够精准识别的。


事实上,人和人交流的时候,应当是不会写那么“不是人话”的复杂指令的,或者那么一长串的prompt,因为人也听不懂,也记不住(短时记忆空间根本没法支撑那些信息量,肯定得反复澄清),更多的还是一步一步培训,让人形成习惯,为什么到了比人弱一些的大模型(确切说,大模型的确在文本的阅读能力和“短时记忆”能力上一定程度是超过人的,但是理解能力嘛……),就一定要一轮就让模型精准完成需求呢?


所谓“重构,而不是整合”,我想应当是包含这种意思,也指明了大模型优化的方向。


所以回过头来看,大模型为什么非得像人呢?为什么要执着于做一些人在做的,非常终端的事情呢(比如画图、做视频)?为什么要参加高考呢?为什么要卷考卷呢?为什么要做数学题呢?为什么要搞那些形式逻辑呢(这本身就不是非确定性问题,大模型是搞不定的,人类其实不借助工具也无法搞定)?以及,为什么要做人形的机器人呢?


当然,前面笔者一直说聊天框是低效的,但它不是没有价值的,它是我们直接和大模型交互的媒介,就如同操作系统的终端,我们可以通过它直接让大模型去执行一些指令,去观察它的能力。


Agent的思考


最后就聊到了对当前agent现状的思考。我认为agent是基于大模型原始形态,向下一步的早期探索,其试图将一些用户任务标准化,将用户的需求转换成一个自动化的指令序列,来完成一些事情。并且agent这种形式应当是实现笔者上文所开的那些脑洞的必经之路,就如同在终端中调试代码一样(人人都是程序员,应该也是这个意思)。


不过,这也意味着,agent目前的探索不应当被当前用户的使用场景所裹挟,而是应当扩展到更加广大的领域,所以写这样一篇东西,笔者也是希望,能够扩大agent的范围,最终真的能催生出AI原生这个广大的生态。


去年OpenAI DevDay上,发布了GPT Store,当时笔者的言论是,他们的这个发布,看上去是让竞争对手们松了一口气的,因为它只是在预期内发布了那么一个东西,或者说它需要搞出来什么事情,但没有什么横空出世。这或许意味着,ChatGPT真的是一个意外的产物,而我们作为后来者,不能因为OpenAI是领头羊,就被它的开发思路裹挟了。现在或许也验证了笔者当初的想法。


我是真心希望,我们能够作为大模型产品的领头羊,创造出下一个奇迹。


文章来自于微信公众号“夕小瑶科技说”,作者“Severus”


AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
智能体

【开源免费】AutoGPT是一个允许用户创建和运行智能体的(AI Agents)项目。用户创建的智能体能够自动执行各种任务,从而让AI有步骤的去解决实际问题。

项目地址:https://github.com/Significant-Gravitas/AutoGPT


【开源免费】MetaGPT是一个“软件开发公司”的智能体项目,只需要输入一句话的老板需求,MetaGPT即可输出用户故事 / 竞品分析 / 需求 / 数据结构 / APIs / 文件等软件开发的相关内容。MetaGPT内置了各种AI角色,包括产品经理 / 架构师 / 项目经理 / 工程师,MetaGPT提供了一个精心调配的软件公司研发全过程的SOP。

项目地址:https://github.com/geekan/MetaGPT/blob/main/docs/README_CN.md

2
prompt

【开源免费】LangGPT 是一个通过结构化和模板化的方法,编写高质量的AI提示词的开源项目。它可以让任何非专业的用户轻松创建高水平的提示词,进而高质量的帮助用户通过AI解决问题。

项目地址:https://github.com/langgptai/LangGPT/blob/main/README_zh.md

在线使用:https://kimi.moonshot.cn/kimiplus/conpg00t7lagbbsfqkq0