在智慧城市和大数据时代背景下,人类轨迹数据的分析对于交通优化、城市管理、物流配送等关键领域具有重要意义。然而,现有的轨迹相关模型往往受限于特定任务、区域依赖、轨迹数据规模和多样性困乏等问题,限制了模型的泛化能力和实际应用范围。
在智慧城市和大数据时代背景下,人类轨迹数据的分析对于交通优化、城市管理、物流配送等关键领域具有重要意义。然而,现有的轨迹相关模型往往受限于特定任务、区域依赖、轨迹数据规模和多样性困乏等问题,限制了模型的泛化能力和实际应用范围。
最近,Jim Fan参与的一项研究推出了自动化数据生成系统DexMimicGen。该系统可基于少量人类演示,合成类人机器人的灵巧手运动轨迹,解决了训练数据集的获取难题,而且还提升了实验中机器人的表现。
Kapoor 在 2024 年 TechCrunch Disrupt 大会上启动了一场关于“新数据管道”的对话,讨论现代 AI 应用的背景,他的对话伙伴包括风险投资公司NEA的合伙人Vanessa Larco,以及数据集成平台Fivetran的首席执行官George Fraser。
清华大学推出的SonicSim平台和SonicSet数据集针对动态声源的语音处理研究提供了强有力的工具和数据支持,有效降低了数据采集成本,实验证明这些工具能有效提升模型在真实环境中的性能。
在大语言模型(LLMs)后训练任务中,由于高质量的特定领域数据十分稀缺,合成数据已成为重要资源。虽然已有多种方法被用于生成合成数据,但合成数据的理论理解仍存在缺口。为了解决这一问题,本文首先对当前流行的合成数据生成过程进行了数学建模。
传统的歌声任务,如歌声合成,大多是在利用输入的歌词和乐谱生成高质量的歌声。随着深度学习的发展,人们希望实现可控和能个性化定制的歌声生成。
美司法部考虑强制谷歌拆分,解决垄断问题。
这样一套组合拳打下去,AI厂商大概率就会乖乖向网站付费了。
解决跨域小样本物体检测问题,入选ECCV 2024。
中科大成果,拿下图学习“世界杯”单项冠军! 由中科大王杰教授团队(MIRA Lab)提出的首个具有最优性保证的大语言模型和图神经网络分离训练框架,在国际顶级图学习标准OGB(Open Graph Benchmark)挑战赛的蛋白质功能预测任务上斩获「第一名」,该纪录从2023年9月27日起保持至今。