在当前AI写作工具迅速发展的背景下,华盛顿大学的这项研究选择了一个独特的切入点。研究团队没有去探讨AI是否应该用于创意写作这个争议性话题,而是直接走进了那些已经在使用AI的作家的创作现场。这18位作家来自不同背景:
在当前AI写作工具迅速发展的背景下,华盛顿大学的这项研究选择了一个独特的切入点。研究团队没有去探讨AI是否应该用于创意写作这个争议性话题,而是直接走进了那些已经在使用AI的作家的创作现场。这18位作家来自不同背景:
在Prompt工程领域,角色扮演提示是否能够有效提高大型语言模型(LLM)的性能一直是一个备受关注的话题。
开源社区 DiamantAI 的主理人 Nir Diamant 发布了一套提示词工程技术库,系统性地教我们如何提高和 AI 的沟通技巧,更好发挥 AI 的潜能。
打开AI大模型助手,问个问题,全是正确的废话,又臭又长。让它写个文案,都是套话,根本用不了。这还算好的。有时候,它答着答着就会胡言乱语,让你哭笑不得。
在Prompt工程领域,规划任务一直以来都是一个巨大的挑战,因为这要求大语言模型(LLMs)不仅能够理解自然语言,还能有效执行复杂推理和应对长时间跨度的操作。
是李继刚贯彻 read in prompt out 的七个提示词。
近日,伊利诺伊大学香槟分校的研究团队发布了一篇开创性论文,首次从理论层面证明了大语言模型(LLM)中的prompt机制具有图灵完备性。这意味着,通过合适的prompt设计,一个固定大小的Transformer模型理论上可以计算任何可计算函数。这一突破性发现为prompt工程提供了坚实的理论基础。
如果要说,谁是国内提示词第一人 那必须是李继刚老师 今年重出江湖,一口气写了好多牛逼的提示词,尤其是这个汉语新解,相信大家多少都看到过类似的图片。
在当前的LLM应用开发中,工程师们通常通过使用单一角色或专家视角的方式来处理复杂问题。这种单一视角虽然能够提供一定的专业性,但也经常因为专家视角的局限性带来偏见,影响输出的全面性和可靠性。
视觉语言模型(如 GPT-4o、DALL-E 3)通常拥有数十亿参数,且模型权重不公开,使得传统的白盒优化方法(如反向传播)难以实施。